设矩阵A和B满足AB 2B,其中A等于301
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:31:40
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-
由于:R(B)>=R(AB).定理(条件一)B是m*n矩阵,所以R(B)=n且R(B)
这是XA=B型的矩阵方程(求X),可能你方法不对给你两个方法:1.将等式两边转置为A^TX^T=B^T对(A^T,B^T)用初等行变换化为(E,X^T),X即为所求2.对AB用初等列变换化为EX你先试
第1步:AB-2A*E=B;第2步:A(B-2E)=B;第3步:A=B*(B-2E)-1;//(B-2E)的-1次方,(B-2E)的逆矩阵;搞定!
A^2+AB+B^2=0-A^2-AB=B^2A(-A-B)=B^2因为B可逆,所以:A(-A-B)B^(-1)B^(-1)=B^2B^(-1)B^(-1)=E,E为单位阵.所以A有逆(-A-B)B^
4正确.ABC=E根据结合律,得A(BC)=E等式两边取行列式,得|ABC|=|E|=1因为|ABC|=|A(BC)|=|A|*|BC|=1所以|A|!=0所以A可逆.等式两边左乘A逆,右乘A,得A逆
由AB=2B+A得(A-2E)B=A(A-2E,A)=-2330331-10110-121-123r1+2r2,r3+r20132531-10110011033r2+r1,r3-r1013253103
因为AB=A+2B所以(A-2E)B=A(A-2E,A)=423100110010-123001r1-4r2,r3+r20-231-40110010033011r3*(1/3),r1+2r3,r2-r
R(E)=n=R(AB)≤R(B)≤n,∴R(B)=n=B的“列秩”=B的列数.∴B的列向量组线性无关.
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
由于A的秩
矩阵B为[300][020][005/3]过程很麻烦,就是设出矩阵B为[x1x2x3][y1y2y3][z1z2z3]根据AB=A+2B联立方程得3x1=3+2x1;4y2=4+2y2;5z3=5+2
ABA=2A+BAAB=2E+BAB-B=2E(A-E)B=2EB=2(A-E)^-1
由原式可知,A,B都为方阵.BA=A+2BBA-2B=AB(A-2E)=A当A-2E可逆时,(即A-2E的行列式不为零),B=(A-2E)^(-1)*A
同楼上,认为Am表示A^m,也就是A的m次方,En表示n阶单位阵A^m=0则En-A^m=En,En+A^m=En因为En^m=En下面就是a^m-b^m和a^m+b^m的展开式了比如En-A^m=E
若λ是A的特征值,则λ-a是B的特征值反之,若λ是B的特征值,则λ+a是A的特征值故λ是A的特征值的充分必要条件是λ-a是B的特征值设λ是A的特征值,x是对应的一个特征向量,则Ax=λx所以(A-aE
1.rank(A)=dimKer(A)+dimKer(B)-dimR^n>0.再任取Ker(A)∩Ker(B)中的非零元x即可.方法二:Ax=0且Bx=0当且仅当(A|B)x=0,其中(A|B)为A和
因为AB=A+2B所以(A-2E)B=A(A-E,A)=1013011-10110012014r2-r11013010-1-1-21-1012014r3+r2,r2*(-1)1013010112-11