设离散型随机变量x的分布律为 5 6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:09:44
随机变量X服从参数为2的泊松分布,D(X)=2.所以cov(X,Y)=cov(X,3X-2)=cov(X,3X)=3cov(X,X)=3D(X)=6.经济数学团队帮你解答,请及时采纳.谢谢!
X=50即为此人坐了9:10分第二班车,概率即为1/6(第一班车在8:10到达的概率)乘以1/6(第二班车在9:10到得概率),其他的根据时间也可求得
P{X≠1}=1-P{X=1}=1-(F(1+0)-F(1-0))=1-(0.8-0.4)=0.6P{X再问:竖线表示的是什么意思?为什么要除?再答:没学过条件概率么?再问:哦!谢谢!
按照定义来看,分布函数F(x)=P{X<x},0-1分布的话,就是取0的概率为1-p,取1概率为p,那么当x≤0时,显然F(x)=P{X<x}=0,当0<x≤1时,F(x)=P{X<x}=p,这是因为
因为不能保证X(k-1)
很明显是0啊再问:可是答案是2/3。。。再答:得敢于怀疑答案!连很多大学使用的某某出版社的《概率论与数理统计》,好像是第二章第一个例题,都犯了类似的错误,把F(x)和f(x)的表达式弄错了。至少我坚持
P(X=-2)=0.1;P(X=0)=0.3;P(X=1)=0.4;P(X=3)=0.2;E(X)=-2*0.1+0*0.3+1*0.4+3*0.2=0.8;E(1-2X)=1-2E(X)=1-1.6
X的概率分布:P(X=0)=0.5P(X=1)=0.3P(X=3)=0.2
0.30.5
P(X=-1)=a;P(X=2)=1-a;已知P(X=2)=1/3;所以a=2/3
0再问:怎么得出的呢?再答:F(b)-F(a)=P(a
第一题看不懂,至于第二题,应选B.X,Y服从正态分布则有:P(Y
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
由离散型随机变量的概率分布列的性质、E(X)的定义可得a+b+0.1=1,a+2b+3×0.1=1.5,解得a=0.6,b=0.3,∴a-b=0.3,故答案为0.3.
E(x)*E(Y^2)=E(x)*((E(Y))^2+D(y))再问:能不能详细点呀再答:你前面都做出来啦?而E(xy^2)=e(x)*e(y^2),求出e(x)和E(y^2)啊再问:知道啦,谢谢啦,
连续变量.分布函数是连续的.在1和-1处连续.得到a-b*π/2=0和a+bπ/2=1即可解出a.
需要知道随机变量X的取值范围,(一)如果X的取值范围是1,2,3···则由所有情况概率总和为1可知:r*(p+p^2+p^3+```)=r*p/(1-p)=1,则p=1/(1+r)(二)如果X的取值范
根据定义p(x=k)的无穷和为1.即5A(0.5^k+0.5^2k+.)=1.等比数列求和公式得k的无穷和是1.因此A=1/5