设级数an2和bn2均收敛,证明下列级数均收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 23:12:09
我刚才想错了,你把它看作1/(1+769x^2)的积分,然后把积分里的东西展开,在逐项积分就可以了易得收敛半径r=1/根号(769)
级数的一致收敛用魏尔斯特拉斯判别法证明.级数的绝对收敛即判断级数每项加绝对值号形成的正项级数的敛散性,可根据比较判别法,比值判别法,根值判别法等进行证明.
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默
1、级数收敛,那么级数一般项数列一定收敛,并收敛到0.2、数项级数要是绝对收敛,那么该级数本身一定收敛.
第二步用的是比较审敛法,和P-级数的结论再问:比较审敛法是什么再答:正项级数审敛的一种最基本的方法:形象的说:大收则小收,小散则大散
一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.
只可能条件收敛an绝对收敛,bn条件收敛an+bn=cn如果cn绝对收敛,那么bn=cn-an绝对收敛,矛盾
收敛且和为1/2再问:我需要过程再答:这已经是最详细的过程了。
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
级数是数列无穷项和级数收敛,数列通项一定收敛数列收敛与之对应的级数却不一定收敛典型的像Σ1/n与1/n
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^