设级数收敛,则一定收敛的级数是( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:31:57
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
错的.级数收敛分为两种,条件收敛与绝对收敛.一个收敛的级数,若它的绝对值级数也收敛,则我们称之为绝对收敛的级数,否则,我们称之为条件收敛的级数.所以绝对收敛只是收敛的子集.例:考虑级数(Sigma)n
an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默
①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的
CA是必要条件B只能针对正项级数D是充分条件
答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这
就是每一项都取绝对值后都收敛,若绝对收敛,必然他收敛,希望对你有所帮助!
答案是C级数收敛的必要条件是加项是无穷小量.B的加项极限是1,D的加项极限是e,都不是无穷小量,所以B和D是发散的.以(1/n^p)为加项的级数稳定为p-级数,这个级数收敛的充分必要条件是p>1,而A
再问:这是分开的两题........第二题和第一题无关.............能麻烦给下第二题的解答吗谢谢!
再问:这个用的什么方法再答:判断收敛性可以使用等价无穷小再问:不太懂再答:结合我写的步骤看啊再问:好的
因为\cosna/n³\≤\1/n³\因为Σ1/n³收敛所以Σ\cosna/n³\收敛从而原级数绝对收敛.
首先,容易证明2^k>k对任意k≥1成立.因此2^(n²)=(2^n)^n>n^n≥n!.级数通项的绝对值2^(n²)/n!≥1,不能收敛到0.因此级数发散.
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.
为什么你问的问题总那么古怪呢1,那是定理,满足莱布尼茨定理了,你说能不能推出交错级数收敛,你说是不是充分条件?定义定理一般都是充分条件,如果不是的话,那定义定理就是错的2,A是中国人推出A是人B是外国
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级