设给定一个权值集合W=(1,3,7,9,11)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:01:12
设给定一个权值集合W=(1,3,7,9,11)
给定一个集合A,|A|=n,求在A上有多少个不同的等价关系?

这个的答案是:贝尔数(BellNumber)没有准确求出BellNumber的公式,只能递推.A上的等价关系与集合A的划分一一对应,所以只要求出A的划分数即可.所谓A的划分,是指把A分成子集A1、A2

设集合A={x|x2+2X-3>0},集合B={x|x2-2ax-1≤0,a>0}若A∩B中恰有一个整数,求实数a的取值

集合B的解为a-sqrt(a^2+1)<=x<=a+sqrt(a^2+1),令y=a-sqrt(a^2+1)……(1)很明显y<0,另一方面,对(1)变形后可得a=(y^2-1)/(

设集合A={-1

1.a4交集为[1,4)

设A={1,2,3},给定A上二元关系R={,,},求r(R),s(R)和t(R).

(R)={,,,,},s(R)={,,,,},t(R)={,,,,}

集合设集合A={x|1/32

若B是空集:B中不等式可化为(x-3m/2)^2-(m/2+1)^2

设集合m={-3

m∩n={x|1≤x

对任意一个非零复数z定义集合Mz={w|w=z^(2n-1),n属于N}设a是方程x+(1/x)=√2的一个根,

容易解得x=√(2)/2±√(2)/2i由z^n=r^n(cosnθ+isinnθ),[迪莫佛定理(DeMorie'sTheorem)]结合2n-1为奇数,θ=±45°,r=1Ma={√(2)/2±√

设w=-1/2+√3i/2则集合A{x/x=w^k=w^-k (k属于z)}中元素 的个数

是2先注意w^3=1又由w^k=w^-k得w^(2k)=1得w^k=1或-1所以x=1或-1

已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-

(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,xi∈M,i=1,2,3}.可得A={0,1,2,3,4,5,6,7}.(Ⅱ)证明:由设s,t∈A,s=a1+a2q

设给定一个权值集合W=(9,4,10,6,3,10,8,15,12,16,2,11),构造一个哈夫曼树

哈夫曼树如下:106/\6343/\/\29342023/\/\/\/\1415161810101112/\/\6899/\45/\23WPL=361

设集合A={x|x^2+2x-3},集合B={x|x^2-2a-1≤0,a>0},若A∩B中恰含一个整数,则实数a的取值

由x^2+2x-3>0,得:(x-1)(x+3)>0,∴x<-3,或x>1.∴A={x|x<-3,或x>1}.由x^2-2ax-1≦0,得:x^2-2ax+a^2≦1+a^2,∴(x-a)^2≦1+a

用列举法表示下列给定的集合:(1)A={x|(x-1)(x+2)=0} (2)b={x属于Z|-3

1.(x-1)(x+2)=0解得:x=1或x=-2所以A={1}或者A={-2}2.-3

设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“好元素”.给定S={1,2,3

要不含“好元素”,说明这三个数必须连在一起(要是不连在一起,分开的那个数就是“好元素”)故不含“好元素”的集合共有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,

设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4

依题意可知,没有与之相邻的元素是“孤立元”,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,

2.设给定一个权值集合W=(3,5,7,9,11),要求根据给定的权值集合构造一棵哈夫曼树并计算哈夫曼树的带权路径长度W

设给定一个权值集合W=(3,5,7,9,11),要求根据给定的权值集合构造一棵哈夫曼树夫曼树的构造:(1)根据给定的n个权值{w1,w2,...,wn}构造n棵二叉树的集合F={T1,T2,...,T

设给定一个权值集合W=(3,5,4,9,11,8,15),要求根据给定的权值集合构造一棵哈夫曼树

55/\1546/\1129/\920/\812/\57/\34带权路径长度WPL=(3+4)*6+5*5+8*4+9*3+11*2+15=163

关于集合的知识.设集合A={x|1

若A∩B=空集,则a≤1若A包含于B,则a≥3再问:如果集合A={x|x≥3},B={x|x