设连续型随机变量X的一切可能值在[a,b]上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:01:24
X服从[0,8]上均匀分布,E(X)=4,D(X)=64/12=16/3再问:麻烦大神能不能将解题过程写的详细点再答:常用分布,[a,b]均匀分布,E(X)=(a+b)/2,D(X)=(b-a)^2/
E(X)=∫(0~1)x*2(1-x)=2(1/6)=1/3E(X²)=2∫(0~1)x²(1-x)=2(1/12)=1/6D(X)=E(X²)-E(X)²=1
∫(-∞,+∞)f(x)=Aarctgx|(0,+∞)=Aπ/2由于是概率函数,应有Aπ/2=1,解得A=2/πP{x≤1}=∫(-∞,1)f(x)=2/πarctgx|(0,1)=(2/π)×(π/
恭祝学习顺利
利用方差的性质
answer
EZ=∫ZP(x)dx=∫,e^x2(1-x)dx=2∫,e^xdx-∫,xe^xdx,这个在0,1之间积分即可EZ^2=∫Z^2P(x)dx=∫e^2x(2-2x)dx在(0,1)上球定积分DZ=E
分布函数F(x)=积分(从负无穷到x)f(t)dt.F(正无穷)=1=>积分(从0到1)Ax^2dt=1A*1^3/3-A*0^3/3=1A=3.
(1)、当x趋于1时,显然Cx^2的极限应该为1,这样才满足连续型随机变量的分布故C*1=1,即C=1(2)、P(0.3
∫(0~2)cx=1c(4/2)=1c=1/2连续型随机变量任意一点概率都为0P(X=2)=0P(0
1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)
Ax^题目有问题啊这个的一般的做法是求(0,1)上Ax^的定积分这个定积分等于1然后就可以求出A的值把题目重新发一下吧
连续变量.分布函数是连续的.在1和-1处连续.得到a-b*π/2=0和a+bπ/2=1即可解出a.
饿……上学期概率论作业题的简化版……我做的那道作业题没有告诉X是连续型的,也可以证明这两个结论,我写一下老师讲的标准方法.①a≤X≤b,求期望E有保序性,这是个定理.所以E(a)≤E(X)≤E(b),
1).显然.(2).DX=E(X-EX)^2=E[(X-(a+b)/2+(a+b)/2-EX)^2]=E[(X-(a+b)/2)^2+((a+b)/2-EX)^2+2(X-(a+b)/2)((a+b)
F(1)=A=1A=1fx(x)=1,x属于(0,1)E(x)=1/2.如有意见,欢迎讨论,共同学习;如有帮助,
A=1因为当x趋于零时,A可以是任意一个常数,是不能确定的.
第二种方法是,先算密度函数,就是对分布函数求导,见图片再问:f(x)已经是F(x)的导数了为什么还要求导呢?没明白再答:题目中给出的是分布函数F(x),没有给出密度函数f(x)啊
(0,2)∈[-1,5]P{-1再问:那P{-1
(1)1=∫[0,k](-2x+2)dx=-k^2+2kk=1(2)F(x)=0x