设连续型随机变量x的密度函数fx是一个分段函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:37:15
X的分布函数F(x)=∫[-inf.,x]f(t)dt=…….分段讨论: 当x0时,F(x)=∫[-inf.,0]f(t)dt+∫[0,x]f(t)dt=……,注意到F(+inf.)=1,确定A=…
E(X)=∫(0~1)x*2(1-x)=2(1/6)=1/3E(X²)=2∫(0~1)x²(1-x)=2(1/12)=1/6D(X)=E(X²)-E(X)²=1
利用方差的性质
answer
EZ=∫ZP(x)dx=∫,e^x2(1-x)dx=2∫,e^xdx-∫,xe^xdx,这个在0,1之间积分即可EZ^2=∫Z^2P(x)dx=∫e^2x(2-2x)dx在(0,1)上球定积分DZ=E
分布函数F(x)=积分(从负无穷到x)f(t)dt.F(正无穷)=1=>积分(从0到1)Ax^2dt=1A*1^3/3-A*0^3/3=1A=3.
根据分布函数的定义,有P{X=x}=F(X)-F(X-0)=0
∫(0~2)cx=1c(4/2)=1c=1/2连续型随机变量任意一点概率都为0P(X=2)=0P(0
题目写错了,应该是f是密度函数,右边F是分布函数证明如下,不用连续的性质∫[F(x+a)-F(x)]dx=∫∫_{x
1、由密度函数的性质∫[0--->+∞]∫[0--->+∞]Ae^(-2x-3y)dxdy=1即:A∫[0--->+∞]e^(-2x)dx∫[0--->+∞]e^(-3y)dy=1得:A[-(1/2)
对f(x)=ax+2积分,得0.5ax^2+2x,把上下限0与1代入得,F(x)=0.5a+2=1a=-2对xf(x)=ax^2+2x积分,得1/3*ax^3+x^2,把上下限0与1代入得,E(x)=
对概率密度函数积分就可以得到分布函数,当x=0时,f(x)=1/2*e^(-x)故分布函数F(x)=F(0)+∫(上限x,下限0)1/2*e^(-x)dx=F(0)-1/2*e^(-x)[代入上限x,
E(x)=∫(-∞,+∞)xf(x)dx=0D(x)=E(x^2)-(E(x))^2=E(x^2)=∫(-∞,+∞)x^2f(x)dx=2∫(0,+∞)x^2f(x)dx=∫(0,+∞)x^2e^(-
因为Y~F(X)F(X)是一个分布函数,值域在0~1之间所以随机变量Y也要取0~1之间的数字当y
Y=1/X可以推出X=h(Y)=1/Yh的导数h'(y)=-1/(y^2)根据公式可以求出来Y的密度函数:g(y)=f(1/y)|h'(y)|=f(1/y)|-1/(y^2)|其中f是X的密度函数~希
Fz(z)=P(max(X,Y)
由于X是随机变量,那么f(x)在[0,1]的定积分是1,即积分kx^3dx|[0,1]=1,即kx^4/4|0,1=1,得到k1^4/4=1,k=4
(0,2)∈[-1,5]P{-1再问:那P{-1
(1)1=∫[0,k](-2x+2)dx=-k^2+2kk=1(2)F(x)=0x