设锐角△ABC的内角ABC所2asinb等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:03:10
设锐角△ABC的内角ABC所2asinb等于
设三角形ABC的三个内角ABC所对的边分别为abc,且满足(2a+c)BC*BA+c*CA*CB=0求角B

(2a+c)BC*BA+c*CA*CB=0(2a+c)accosB+cabcosC=0(2a+c)cosB+bcosC=0(2a+c)(a^2+c^2-b^2)/(2ac)+b(a^2+b^2-c^2

设△ABC的三个内角A、B、C所对的边长依次为a、b、c,若△ABC的面积为S,且S=a2-(b-c)2,则sinA1−

∵△ABC的面积为S,且S=a2-(b-c)2=a2-b2-c2+2bc=12bc•sinA,∴由余弦定理可得-2bc•cosA+2bc=12bc•sinA,∴4-4cosA=sinA,∴sinA1−

设a,b,c分别是三角形ABC的三个内角A,B,C所对的边,S△ABC=a^-(b-C)^2,则sinA/1-cosA=

S△ABC=1/2bcsinA所以1/2bcsinA=(a^2-(b-C)^2)sinA=2(a^2-b^2-c^2+2bc)/bccosA=(b^2+c^2-a^2)/2bc1-cosA=(2bc-

在锐角△ABC中,三个内角的度数都是质数,则这样的三角形(  )

90以内的质数有:23571113171923293137414347535961677173798389质数除2以外均为奇数,三个奇数相加亦为奇数,而三角形内角和的度数为180,是偶数,所以必有一个

已知三角形ABC的三个内角A B C 所对的边为abc,A是锐角,√3b=2a× sinB .求角A的度数 若a=7,三

√3b=2a·sinB两边同除以b,得到√3=2a·(sinB/b)√3=2a·(sinA/a)正弦定理sinA=1/2*√3A是锐角所以A=60°三角形面积公式S=1/2bcsinA10√3=1/2

已知△ABC的三个内角A,B,C所对的边分别为a,b,c,A是锐角,且根号3b=2asinB

1、因为根号3b=2asinB,可得到b/sinB=2a/根号3.利用三角形的正玄定理,b/sinB=a/sinA.和前面的等式联立可求得A=60度.2、三角形面积S=1/2乘以bcsinA.可得bc

设锐角△ABC的三内角A,B,C的对边分别为a,b,c,向量m=(1,sinA+根号3cosA)向量M=(sinA,3/

1、向量共线所以1*3/2=(sinA+√3cosA)*sinA3/2=sin²A+√3cosA*sinA插入工具{Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1

若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在(  )

∵△ABC为锐角三角形,∴A+B>π2.∴A>π2-B,B>π2-A.∴sinA>cosB,sinB>cosA∴cosB-sinA<0,sinB-cosA>0∴P在第二象限.故选B

已知锐角△ABC中,abc分别为内角ABC的对边,cos平方A+1/2=sin平方A.(1)求角A(2)若a=根号7,求

Cos^2A-Sin^2A=Cos2A=-1/22A=2/3Pi,A=1/3Pia=V7,A固定,S△ABC最大时高最大,此时b=c,角B=角C=(Pi-pi/3)/2=pi/3则构成等边三角形,S△

锐角△ABC中,a,b,c,分别是三内角A,B,C,的对边,设B=2A,则b/a的取值范围

/a=sinB/sinA=2cosA因为是锐角三角形,所以A<45且B<90则A+B=3A=180-C>90所以A>30综上30<A<45则b/a=2cosA∈(根

设ABC为三角形ABC的三个内角,若cosB=1/3,sinC=根号3/2,且C为锐角,求sinA

cosB=1/3->sinB=2√2/3sinC=√3/2,且C为锐角->cosC=1/2sinA=sin(π-B-C)=sin(B+C)=sinBcosC+sinCcosB=(2√2+√3)/6

设△ABC内的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,已知△ABC的面积S=1/2bcsi

因为3acosc=4csinA  所以3sinAcosC=4sinCsinA  3cosC=4sinC cosC=4/5由S=10,b=4csinA=5因为3acosC=4csinAa=25

在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=3b.

(Ⅰ)由2asinB=3b,利用正弦定理得:2sinAsinB=3sinB,∵sinB≠0,∴sinA=32,又A为锐角,则A=π3;(Ⅱ)由余弦定理得:a2=b2+c2-2bc•cosA,即36=b

设ABC为三角形ABC的三个内角,若cosB=1/3,f(c/2)=-1/4,且C为锐角,求sinA

(1)f(X)=cos(2x+pai/3)+sin^2x=cos2xcos60-sin2xsinpai/3=1/2cos2x-根号3/2sin2x+1/2-cos2x/2=-根号3/2sin2x+1/

设三角形ABC的内角A,B,C

答案:1、42、0.75(1)由射影定理acosB+bcosA=c又acosB-bcosA=0.6c解得acosB=0.8cbcosA=0.2c又由正弦定理a=2RsinAb=2RsinBc=2Rsi

设△ABC中的三个内角A,B,C所对的边分别是a,b,c,已知a=1,b=2,cosC=1/4求ABC周长 求cos(A

再问:哪里是第二问啊--再答:周长下面的是第2问用到两角差

已知三角形ABC三个内角A,B,C所对的边分别为a,b,c,A是锐角,且(根号3)b=2asinB

如果没有(根号3)的话,那∠A=30°,以下按照此条件计算:根据面积公式S=1/2bcsinA=3√3/4sinA=1/2bc=3√3因为b=1,所以c=3√3运用余弦定理a^2=b^2+c^2-2b

设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=45,b=2,

(1)∵△ABC中,cosB=45,∴sinB=1-cos2B=35,由正弦定理知asinA=bsinB,∴a=bsinB•sinA=235×12=53.(2)由S△ABC=12acsinB=310a

在锐角△ABC中,内角A,B,C所对的边分别为a,b,c.已知c=2,2sin2C-2cos2C=1.求

(1)由2sin2C-2cos2C=1有:cos2C=cos2C−sin2C=−12(3分)(也可将1化为1=sin2C+cos2C,转化为tanC求解C)∵C∈(0,π2)∴2C=2π3,从而有:C

设函数f(x)=sin^2x+根号3sinxcosx+3/2.若abc分别是△ABC的内角ABC所对的边

继续化简f(x)=1-1/2(2cos^2x-1)-1/2+(根号3/2)sin2x+(3/2)=1/2+3/2-1/2cos2x+(根号3/2)sin2x=2-sin(π/6-2x)