设随机变量x,y 相互独立,分别服从指数为a b的指数分布,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:43:18
xy为独立变量,D(2X-3y)=2^2Dx+3^2DY=4*6+9*3=51
可以利用指数分布的特征,得到D(X)=1/4从原始理论推导的话,D(X)算起来有些麻烦E(X)=∫(0~无穷)x2e^(-2x)dx=1/2E(Y)=∫(0~1/4)4xdx=2x²](0~
解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.
var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5
N(0,1)N(1,1)XY独立所以X+Y和X-Y都是服从正态分布的而且E(X+Y)=EX+EY=1,D(X+Y)=DX+DY=2所以X+Y~N(1,2)所以P(X+Y=0)=Φ((0-1)/√2)=
注意到Y-1也是N(0,1)与同分布,即是求P[3X+4(Y-1)
D.fx(x)fy(y)再问:能不能解释一下?再答:随机变量X和Y相互独立
设X,Y的分布律分别为X01Y011-pp1-qq(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)
设X,Y的分布律分别为X01Y011-pp1-qq(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4
因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0
正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)
望采纳.再问:答案是分段的1-e^-z,0
D(X+2Y)=D(x)+D(2y)+2cov(x,y)独立性知cov(x,y)=0指数分布(2)因此D(x)=1/4,均匀分布(0,4)因此D(y)=4x4/12因此D(x)+D(2y)=D(x)+
1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0
0.52x+(118-x)*0.33=53
fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出