设随机变量X~N(1,4),Y=2X 1,则Y所服从的分布为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:58:05
fx(x)是f(x)的密度函数fy(y)=2fx(根号(4-y))|dx/dy|=fx(根号(4-y))/根号(4-y)再答:e^[(y-4)/2]/[根号(pi(8-2y))sigma^2]好人做到
设随机变量X与Y相互独立,且X~N(0,1),N(1,4).(1)求二维随机变量(X,Y)的概率密度f(x,y).(2)设(X,Y)的分布函数为F(x,y),求F(0,1).f(x,y)=(1/(4π
E(Z)=EY-E(2X)=-1-0=-1D(Z)=DY+4DX=1+16=17所以z~(-1,17)对不起啊!题目应该是设随机变量X~N(0,4),N(-1,1),且X,Y相互独立,Z=X-2Y,则
说实话,这个题不是一般的简单,只要套公式即可.E(Z)=1/3*1+1/4*0=1/3D(Z)=1/9*9+1/16*16=2
D(X)=4D(Y)=10*0.6*0.4=2.4D(2X-Y)=4D(X)+D(Y)=16+2.4=12.4如有意见,欢迎讨论,共同学习;如有帮助,
E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)
Z=3X-2Y+4E(Z)=E(3X-2Y+4)=E(3X)-E(2Y)+E(4)=3*2-2*2+4=9D(Z)=D(3X-2Y+4)=D(3X)+D(2Y)+D(4)=9*1+4*4=25P{Z再
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:
正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)
标准正态分布X~N(0,1),x在0处取得最大值,P{x再问:那要是P{X≥1},也是的0.5吗?再答:对啊,因为P{X=a}=1;连续分布取单点值的概率是0,所以说P{Xa}=1;P{X=a}=1;
N(0,1)表示随机变量X服从期望为0,方差为1的正态分布,即标准正态分布其中N是NormalDistribution的缩写,即正态分布.正态分布的概率密度函数为f(x)=]1/(√2π)σ]*exp
方差为3+4=7DZ=DX+DY如果有系数系数要平方
E(aX+BY)=aEx+bEy.D(aX+bY)=a^2DX+b^2DY.所以:E(X-2Y)=EX-2EY=1-2=-1.D(X-2Y)=DX+4DY=4+4*2=12.
E(Z)=E(2X-4Y+3)=2E(X)-4E(Y)+E(3)=2-0+3=5
F(y)=P(Y再问:后面那一串上角标是怎么个意思?再答:具体点
N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0
先考察X-Y,这个随机变量是正态分布,且有E(X-Y)=E(X)-E(Y)=1-1=0D(X-Y)=D(X)+D(Y)=1/4+3/4=1所以X-Y~N(0,1),是标准正太分布.令Z=|X-Y|,那