设随机变量X与Y相互独立,其密度函数分别是fx(x)={e^-x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:49:38
这是双变量函数的概率分布,先求出概率分布函数,再求导就得到密度函数.我明白你的意思,你是想让别人帮你做出来.我提供思路.你从分布函数出发,首先求z=max(x,y)的分布函数,它等于p(Z再问:这个混
var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5
1/(PI)^O.5
首先应该明白X、Y都服从二项分布,这道题并不难.见图
D(x)+D(y)
分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答
E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/
(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4
解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9
因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0
f(x)=[(50pi)^(-1/2)]e^(-x^2)f(y)=[(50pi)^(-1/2)]e^(-y^2)f(x,y)=f(x)f(y)X与Y相互独立.再问:这样好像不对吧,有解题过程吗?再答:
因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果
知道x^2与y^2相互独立.D(xy)-D(x)D(y)=E(x^2)E(y)^2+E(y^2)E(x)^2-E(x)^2E(y)^2-E(xy)^2=D(x)E(y)^2+D(y)E(x)^2>=0
1fx=int(-oo,+oo)f(x,y)dy=1fy=int(-oo,+oo)f(x,y)dx=0.5e^(-0.5y)f(x,y)=fx*fy,独立20-8上的均匀分布EX=int(0,8)x/
望采纳.再问:答案是分段的1-e^-z,0
1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0
fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出