设随机变量X与Y相互独立,其密度函数分别是fx(x)={e^-x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:49:38
设随机变量X与Y相互独立,其密度函数分别是fx(x)={e^-x
设随机变量X与Y相互独立,并且均服从U(0, θ),求E(max{X,Y})

这是双变量函数的概率分布,先求出概率分布函数,再求导就得到密度函数.我明白你的意思,你是想让别人帮你做出来.我提供思路.你从分布函数出发,首先求z=max(x,y)的分布函数,它等于p(Z再问:这个混

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

设随机变量X~N(-3,1),(2,4),且X与Y相互独立,则X-2Y+11~

E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

1.设随机变量X Y 相互独立,同分布与N (0,0.5),求E(| X - Y |)

X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/

设随机变量X和Y相互独立,其概率分布分别为: 如图

(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4

设随机变量X~N(-1,2),N(2,7),且X与Y相互独立,则D(X+Y)=

解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9

设随机变量X与Y相互独立其概率密度分别为 Px(x)={2x,0

因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0

设二维随机变量(x,y)服从二维正态分布,其概率密度1/50π证明X与Y相互独立详见图片 求X,Y是否独立

f(x)=[(50pi)^(-1/2)]e^(-x^2)f(y)=[(50pi)^(-1/2)]e^(-y^2)f(x,y)=f(x)f(y)X与Y相互独立.再问:这样好像不对吧,有解题过程吗?再答:

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

设随机变量X与Y相互独立,证明:D(XY)〉=D(X)D(Y).

知道x^2与y^2相互独立.D(xy)-D(x)D(y)=E(x^2)E(y)^2+E(y^2)E(x)^2-E(x)^2E(y)^2-E(xy)^2=D(x)E(y)^2+D(y)E(x)^2>=0

1、设二维随机变量(X,Y)的概率密度为,问X与Y是否相互独立,并说明理由.

1fx=int(-oo,+oo)f(x,y)dy=1fy=int(-oo,+oo)f(x,y)dx=0.5e^(-0.5y)f(x,y)=fx*fy,独立20-8上的均匀分布EX=int(0,8)x/

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量X与Y相互独立,且其概率密度分别为

fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出