设随机变量x服从二项分布(a,b)上的均匀分布,令Y=cX+d求Y的密度函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:59:19
E(X)=E(Y)=np=2,D(X)=D(Y)=np(1-p)=1.6E(X-Y)=E(X)-E(Y)=0;D(X-Y)=D(X)+D(Y)=3.2P{|X-Y|=>2}=
1-(1-p)^3=19/27(1-p)^3=8/27(1-p)=2/3p=1/3P{X>=1}=1-(1-p)^2=5/9
期望=np=12;方差=np(1-p)=8
X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C
(1)由P(X≥1)=5/9,可得P(X=0)=4/9=(1-p)^2,故p=1/3,从而P(Y≥1)=1-(1-p)^3=26/27(2)np乘(1-p)^{n-1}=n(n-1)/2乘p^2乘(1
cov(x,y)=cov(x,2x+3)=2cov(x,x)=2D(x)=2np(1-p)=2*100*0.6*(1-0.6)=48
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
稍等,答案奉上还在吗?再问:在的。再答:额,马上给你答案满意请采纳,不懂再追问,谢谢
EX=3DX=3EY=5DY=2.5EZ=-7DZ=13
根据二项分布的期望公式Eξ=xyE(2ξ+4)=2·Eξ+4=2xy+4
由二项分布的公式可以知道P(x=3)=C(6,3)*0.5^3*(1-0.5)^(6-3)=20*0.5^6=0.3125
P(X=k)=C(n,k)*p^k*(1-p)^(n-k).
这个有公式的呀,E(X)=np,Var(X)=np(1-p)所以E(X)=36×1/3=12,Var(X)=36×1/3×2/3=8.
这个实际上是使用二项分布和泊松分布的卷积公式,计算过程见图两个独立的泊松变量或二项变量之和仍是泊松变量或二项变量
D(2X-3Y)=4*D(X)+9*D(Y)D(X)=n*p*q=100*0.2*0.8=16D(Y)=λ=3所求为64+27=91
P{X≥1}=5/9→P{X=0}=1-P{X≥1}=4/9P{X=0}=1*p^0*(1-p)^2=4/9→p=1/3
U(a,b)表示X服从a,b区间上的均匀分布
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)