设随机变量X服从参数为λ的指数分布则方差D(X)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:57:02
设随机变量X服从参数为λ的指数分布则方差D(X)=
设随机变量X的密度函数f(x)为偶函数,X^2服从参数为λ的指数分布,求f(x)?

X^2服从参数为λ的指数分布所以P{X^2>x^2}=e^(-λx^2)当xx^2}=(1/2)e^(-λx^2)所以f(x)=dF(x)/dx=-λxe^(-λx^2)又因为f(x)是偶函数所以x>

设随机变量X服从参数为3的泊松分布,则X平方数学期望,

依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;

随机变量的数学期望设随机变量ξ,η相互独立,ξ服从参数为λ的指数分布,η服从参数为n,p(0

因为随机变量ξ,η相互独立,所以E(ξη)=E(ξ)E(η)而E(ξ)=1/λ,E(η)=np所以E(ξη)=np/λ

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设随机变量X=e^y服从参数为e的指数分布.求随机变量Y的概率密度函数

先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e

设随机变量X服从参数为2的指数分布,证明Y=e^-2X服从U(0,1)

解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量x服从参数为(2,P)的二项分布,Y服从参数为(4,P)的二项分布

因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-

设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为

P{X=1}=λ*e^(-λ)P{X=2}=0.5*(λ^2)*e^(-λ)所以λ*e^(-λ)=0.5*(λ^2)*e^(-λ)整理λ=0或λ=2λ≠0,所以λ=2P{X=0}=e^(-2)P{X=

设随机变量x服从参数为2的指数函数,y服从参数为4的指数分布则E(2x 3y)等于多少

指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4

设随机变量X服从参数λ 为的指数分布,则概率 P(X>EX)?

X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X

设随机变量X服从参数为λ的指数分布,则P{X>DX}

由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.

设随机变量X服从参数为3的指数分布,试求:

(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y

设随机变量X,Y独立,且均服从参数为λ的指数分布,求:X/(X+Y)的分布

设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.

设随机变量X服从参数为4的泊松分布,则DX =____________.

泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)

设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=59,

/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)