设随机变量X的分布函数为F(x)连续,求Y=F(x)的密度函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:13:32
X服从[0,8]上均匀分布,E(X)=4,D(X)=64/12=16/3再问:麻烦大神能不能将解题过程写的详细点再答:常用分布,[a,b]均匀分布,E(X)=(a+b)/2,D(X)=(b-a)^2/
(1)、当x趋于1时,显然Cx^2的极限应该为1,这样才满足连续型随机变量的分布故C*1=1,即C=1(2)、P(0.3
很明显是0啊再问:可是答案是2/3。。。再答:得敢于怀疑答案!连很多大学使用的某某出版社的《概率论与数理统计》,好像是第二章第一个例题,都犯了类似的错误,把F(x)和f(x)的表达式弄错了。至少我坚持
若存在F(x)=0.4F1(x)+kF2(x),则在区间内存在一点,F(x)=F1(x)=F2(x),得F1(x)=F2(x)——①;F1(x)=0.4F1(x)+kF2(x)——②;解得:0.6F1
分位数变换,均匀分布再问:给定的f(x)怎么用?再答:取c属于(0,1)考虑P(Y
Ax^题目有问题啊这个的一般的做法是求(0,1)上Ax^的定积分这个定积分等于1然后就可以求出A的值把题目重新发一下吧
由于概率函数连续,所以Asin(π/2)=1,即A=1对F(X)求导得密度函数f(x)=cosx,0≤x≤π/2,其他为0所以E(X)=∫(0,π/2)xcosxdx=(π/2)-1
E(X)=2随机变量X的分布函数F(x)在x
求极限:limAsinx=1(x→π/2),得A=1P(|x|
因为实际上在连续型随机变量的中单个点的概率是没有意义的,这一点无论是从连续型随机变量概率的定义还是从计算方法来看都是可以说明问题的(从负无穷到正无穷的概率一共为1,那么单个点的概率就是用1除以一个无穷
正确的是:C1,f(x)不能F(∞)=1≠0=F(-∞)3,只剩下C
分布律为P(X=-1)=0.4P(X=1)=0.4P(X=2)=0.2如有意见,欢迎讨论,共同学习;如有帮助,再问:答案是这个,但是怎么算出来的呢???再答:利用公式P(X=x)=F(X)-F(X-0
由于X是随机变量,那么f(x)在[0,1]的定积分是1,即积分kx^3dx|[0,1]=1,即kx^4/4|0,1=1,得到k1^4/4=1,k=4
答案见图中
1.常数k吧F(1+)=1,连续所以F(1-)=F(1+)=K得K=12.f(x)=F'(x)是个分段函数f(x)=0,x<0f(x)=1,0≤x<1f(x)=0,1≤x(3)p(|x|<0.5)=p
概率密度f(x)=F'(x).故:|x|
F(1)=A=1A=1fx(x)=1,x属于(0,1)E(x)=1/2.如有意见,欢迎讨论,共同学习;如有帮助,
A=1因为当x趋于零时,A可以是任意一个常数,是不能确定的.