设随机变量X的分布律为 X=1 2 3 P=0.5 1 3 1 6 求分布函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:04:18
Z的取值范围01)3xdx∫(x-z-->x)前一积分结果为z^3,后一积分结果为(3/2)z-(3/2)z^3故F(z)=(3/2)z-(1/2)z^3求导即得密度函数f(z)=dF(z)/dz=(
X服从[0,8]上均匀分布,E(X)=4,D(X)=64/12=16/3再问:麻烦大神能不能将解题过程写的详细点再答:常用分布,[a,b]均匀分布,E(X)=(a+b)/2,D(X)=(b-a)^2/
1.F(0+)=2A+B=0,F(+∞)=2A=1故:A=1/2,B=-12.P(0
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
很明显是0啊再问:可是答案是2/3。。。再答:得敢于怀疑答案!连很多大学使用的某某出版社的《概率论与数理统计》,好像是第二章第一个例题,都犯了类似的错误,把F(x)和f(x)的表达式弄错了。至少我坚持
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
设随机变量X的分布律为X-2-1012P1/51/61/51/1511/30于是,Y=X^2的分布律为X^2014P1/57/3017/30Y的分布函数为F(y)=P{Y
若存在F(x)=0.4F1(x)+kF2(x),则在区间内存在一点,F(x)=F1(x)=F2(x),得F1(x)=F2(x)——①;F1(x)=0.4F1(x)+kF2(x)——②;解得:0.6F1
由于概率函数连续,所以Asin(π/2)=1,即A=1对F(X)求导得密度函数f(x)=cosx,0≤x≤π/2,其他为0所以E(X)=∫(0,π/2)xcosxdx=(π/2)-1
求极限:limAsinx=1(x→π/2),得A=1P(|x|
简单噻,先求X^2的分布律X^204P0.30.7EX^2=0*0.3+4*0.7=2.8
由于∞k=0P{X=k}=1,又eλ=∞k=0λkk!,∴a∞k=0λkk!=aeλ=1∴a=e-λ
由于X是随机变量,那么f(x)在[0,1]的定积分是1,即积分kx^3dx|[0,1]=1,即kx^4/4|0,1=1,得到k1^4/4=1,k=4
答案见图中
1.常数k吧F(1+)=1,连续所以F(1-)=F(1+)=K得K=12.f(x)=F'(x)是个分段函数f(x)=0,x<0f(x)=1,0≤x<1f(x)=0,1≤x(3)p(|x|<0.5)=p
概率密度f(x)=F'(x).故:|x|
F(1)=A=1A=1fx(x)=1,x属于(0,1)E(x)=1/2.如有意见,欢迎讨论,共同学习;如有帮助,
A=1因为当x趋于零时,A可以是任意一个常数,是不能确定的.