设随机变量x的数学期望ex=u

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:06:59
设随机变量x的数学期望ex=u
1、设随机变量X~U(1,3),则1/X的数学期望为 () 答案是1/2ln3

1.1/2ln32.28.83.X与Y相互独立,且X~P(入),Y~P(1),则X+Y~P(λ+1)所以P(X=k|X+Y=n)=P{X=k,Y=n-k}/P{X+Y=n}=exp(-λ)λ^k/k!

随机变量的数学期望请问如果随机变量XY相互独立的话怎么推出EX=EY啊?

楼主的这个结论明显是得不出来的.如果随机变量XY相互独立,那么有:EXY=EXEYXY相互独立,那么它们的相关系数:ρ=0ρ=Cov(X,Y)/√(DXDY)=0协方差:Cov(X,Y)=0Cov(X

设随机变量x服从区间[a b]上的均匀分布 写出其概率密度函数f(x),并求其数学期望Ex,方差Dx.

F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/

懂数学期望和方差的来随机变量X满足E((x-1)^2)=10,E((x-2)^2)=6,求Ex Dx.

E(X^2)-2EX+1=10E(X^2)-4EX+4=6所以EX=7/2E(X^2)=16D(X)=E(X^2)-[E(X)]^2=16-(7/2)^2

设离散型随机变量X的数学期望为EX,方差为DX,试证明:DX=EX^2-(EX)^2

证明:D(X)=E{[X-E[X]]^2}(方差的定义)=E{X^2-2*X*E[X]+E[X]^2}=E[X^2]-E{2*X*E[X]}+E{E[X]^2}=E[X^2]-2*E[X]*E[X]+

设随机变量X的数学期望存在,则E(E(E(X)))= .

E(X)已经是一个数,它的期望还是它本身E(X)

已知随机变量X的期望EX=U,方差DX=&^2,随机变量Y=(x-u)/&,求EY和DY

EY=0DY=1EY=E(x-u)/&=(EX-U)/&=0DY=D[(X-U)^2]/(&^2)而D[(X-U)^2]=E[(X-U)^2]-[E(X-U)]^2=E[(X-U)^2](后面项为0)

设随机变量X服从参数为1的指数分布,则数学期望E{X+e-2X}= ___ .

/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-

随机变量X的数学期望E(X)是平均值吗?他是怎么样的平均值?设X服从[a,b]上的均匀分布,则X的史学期望值EX

是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么

随机变量X的数学期望

解题思路:本题主要充分理解正态分布的意义,u即是数学期望,也是正态分布密度函数的对称轴.解题过程:正态分布是连续型的随机变量,记作X-N(u,g2),其中u为期望,也是正态分布密度函数的对称轴,g2是

设常数a与b为随机变量X的一切可能取值中的最小值与最大值,EX,DX分别为X的数学期望与方差

1).显然.(2).DX=E(X-EX)^2=E[(X-(a+b)/2+(a+b)/2-EX)^2]=E[(X-(a+b)/2)^2+((a+b)/2-EX)^2+2(X-(a+b)/2)((a+b)