设随机变量x的数学期望ex=u
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:06:59
1.1/2ln32.28.83.X与Y相互独立,且X~P(入),Y~P(1),则X+Y~P(λ+1)所以P(X=k|X+Y=n)=P{X=k,Y=n-k}/P{X+Y=n}=exp(-λ)λ^k/k!
楼主的这个结论明显是得不出来的.如果随机变量XY相互独立,那么有:EXY=EXEYXY相互独立,那么它们的相关系数:ρ=0ρ=Cov(X,Y)/√(DXDY)=0协方差:Cov(X,Y)=0Cov(X
切比雪夫不等式P(|X-μ|》3σ)
F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/
E(X^2)-2EX+1=10E(X^2)-4EX+4=6所以EX=7/2E(X^2)=16D(X)=E(X^2)-[E(X)]^2=16-(7/2)^2
证明:D(X)=E{[X-E[X]]^2}(方差的定义)=E{X^2-2*X*E[X]+E[X]^2}=E[X^2]-E{2*X*E[X]}+E{E[X]^2}=E[X^2]-2*E[X]*E[X]+
E(X)已经是一个数,它的期望还是它本身E(X)
EY=0DY=1EY=E(x-u)/&=(EX-U)/&=0DY=D[(X-U)^2]/(&^2)而D[(X-U)^2]=E[(X-U)^2]-[E(X-U)]^2=E[(X-U)^2](后面项为0)
是随机变量X的方差
lambda
/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-
是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么
解题思路:本题主要充分理解正态分布的意义,u即是数学期望,也是正态分布密度函数的对称轴.解题过程:正态分布是连续型的随机变量,记作X-N(u,g2),其中u为期望,也是正态分布密度函数的对称轴,g2是
1).显然.(2).DX=E(X-EX)^2=E[(X-(a+b)/2+(a+b)/2-EX)^2]=E[(X-(a+b)/2)^2+((a+b)/2-EX)^2+2(X-(a+b)/2)((a+b)
由切比雪夫不等式:P{|X-EX|>=ε}=3a}