设随机变量X的数学期望EX存在,则D(EX)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:06:59
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
不用积分的啊.B(3,0.4),EX=3*0.4=1.2,DX=3*0.4*0.6=0.72,E(X^2)=(EX)^2+DX=1.2^2+0.72=2.16.(1).E(X1)=E(X^2)=2.1
已知X~B(3,0.4),则X的概率分布为X0123pk0.2160.4320.2880.064∴E(X1)=E(X^2)=0×0.216+1×0.432+4×0.288+9×0.064=2.16.E
切比雪夫不等式P(|X-μ|》3σ)
-1根据随机变量的数字特征公式推就行了再问:我想知道具体算的过程啊~~泪奔~~再答:大概过程如图协方差和期望方差的转化方差期望的变形公式等查书如果没书我也没办法了实在懒得打公式了
F(X)=(X-a)/(b-a)f(X)=F'(X)=1/(b-a)E(X)=∫xf(x)dx=∫x/(b-a)dx=x^2/2|(a,b)/(b-a)=(b^2-a^2)/2(b-a)=(a+b)/
证明:D(X)=E{[X-E[X]]^2}(方差的定义)=E{X^2-2*X*E[X]+E[X]^2}=E[X^2]-E{2*X*E[X]}+E{E[X]^2}=E[X^2]-2*E[X]*E[X]+
这个不需要证明对任意的随机变量的分布经过标准化处理后都服从标准正态分布N(0,1)再问:那个原题就是这样.....应该也有个推导过程吧?再答:E(x*)=E[x-E(x)/√D(x)]=[E(x)-E
从密度函数对y轴的对称性,不用计算,可知数学期望:E(X)=0. 若计算:E(X)=∫(0,-1)X(1+X)dX+∫(1,0)X(1-X)dX  
E(X)已经是一个数,它的期望还是它本身E(X)
lambda
x的概率密度函数f(x)=1,-1/2
就是(10*10+2*10+4)*0.4=124*0.4=49.6
是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么
解题思路:本题主要充分理解正态分布的意义,u即是数学期望,也是正态分布密度函数的对称轴.解题过程:正态分布是连续型的随机变量,记作X-N(u,g2),其中u为期望,也是正态分布密度函数的对称轴,g2是
1).显然.(2).DX=E(X-EX)^2=E[(X-(a+b)/2+(a+b)/2-EX)^2]=E[(X-(a+b)/2)^2+((a+b)/2-EX)^2+2(X-(a+b)/2)((a+b)
用定义就能证明吧cov(x,y)=EXY-EX*EY设Y是个常数ccov(x,c)=E(cX)-E(X)*E(c)=cEX-cEx=0也可以用这个公式证明D(X+Y)=DX+DY+2COV(XY)_爱