设随机变量X的方差D(X)存在,且D(X)>0,令
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:09:12
回答:设Z=-Y,于是D(Z)=D(-Y),D(X-Y)=D(X)+D(-Y)=D(X)+D(Z)=1+2=3.
由题意可知,相关系数ρXY=0.6根据相关系数性质ρXY=COV(X,Y)DXDY有:COV(X,Y)=2×1×0.6=1.2根据方差的性质:D(3X-2Y)=9DX-12COV(X,Y)+4DY=4
解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.
D(X-2Y+4)=D(X)+4D(Y)=4+40=44
据方差的性质,若X,Y为相互独立的随机变量,有:D(X+Y)=D(X)+D(Y)答案是7再问:您去定吗?我要考试,谢谢真实答案再答:我确定,这是概率论与数理统计书上的内容再问:若X是连续性随机变量,a
稍后,一会儿上图给你.
分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-
D(x)+D(y)
均匀分布,故c=1/2D(x)=∫1/2*(x-2)²dx=1/3(积分限为1到3)再问:如何知道它是均匀分布呢?再答:概率密度为f(x)=c,是常数,所以是均匀分布再问:D(x)=∫1/2
-1根据随机变量的数字特征公式推就行了再问:我想知道具体算的过程啊~~泪奔~~再答:大概过程如图协方差和期望方差的转化方差期望的变形公式等查书如果没书我也没办法了实在懒得打公式了
9+25-0.2*3*5*2=28
d(2x-1)=4d(X)=12
你首先要明白E(X)和D(X)都是一个常数,再利用相关的公式得到E(D(X))=1,D(E(X))=0
这个不需要证明对任意的随机变量的分布经过标准化处理后都服从标准正态分布N(0,1)再问:那个原题就是这样.....应该也有个推导过程吧?再答:E(x*)=E[x-E(x)/√D(x)]=[E(x)-E
Cov(X,Y)=ρ√DX√DY=-1/6*3*2=-1D(X+Y)=DX+DY+2Cov(X,Y)=9+4+2*-1=11
E(x)=np=0.8D(x)=np(1-p)=0.64两式相除得1-p=0.8,所以p=0.2,代入解得n=4这表示4次独立重复试验中,每次事件A发生的概率为0.2,不发生概率为0.8,p(x=3)
D(X)就是方差啦·,已经告诉你了.P{|X-EX|>=2}
2011-06-0511:42Ex=np=2n=6C62(1/3)^2*(2/3)^4X-B(n,1/3)随机变量服从二项分布选择
E(X) 、D(X)均为常量