设随机变量x的概率密度为 P{X=k}=1 2^k,求DX
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:08:11
当x≧0时,y≧1,f(x)=e^(-x),F(x)=∫f(x)=-e^(-x)+C,当x→+∞时,F(x)=-e^(-x)+C=1,所以C=1,F(x)=1-e^(-x),所以F(y)=1-1/y,
u=x^2P(u1
恭祝学习顺利
∫(-∞,+∞)f(x)dt=∫[1,2]Ax^2dx+∫[2,3]Axdx=A/3*x^3[1,2]+A/2x^2[2,3]=7/3A+5/2A=1A=6/29F(x)=∫(-∞,x)f(t)dt=
注:这是2007年考研数学一第23题,楼主随便在网上搜一下“2007年数学一答案”,就可以找到答案
先算期望,套公式E(x)=积分xf(x),积分区间为(-a,a)(可以假设a>0,a显然!=0,否者|x|
1.f(x)=ax(1-x^2)0
新年好!可用概率密度积分为1如图得出c=-1/2.经济数学团队帮你解答,请及时采纳.谢谢!
解第2题,F(x,y)=P{X
好难打这些怪符号呀,你留个邮件,我写完了然后拍成图片发到你邮箱图片已发送请查收
以X取值为分段标准当X
这题难度较大,除了要知道概率密度的求法,在计算当中还要知道反三角函数的一些知识,还有含参变量积分的求导方法,也就是说除了概率知识,对于高等数学还要有一定的基础.解答如下图:
需要知道随机变量X的取值范围,(一)如果X的取值范围是1,2,3···则由所有情况概率总和为1可知:r*(p+p^2+p^3+```)=r*p/(1-p)=1,则p=1/(1+r)(二)如果X的取值范
f(x,y)=Ae^(-2x-3y),x>0,y>0∫∫f(x,y)dxdy=1,可得A=6f(x)=2e^(-2x),x>0f(y)=3e^(-3y),y>0f(x,y)=f(x)*f(y),所以X
详细解答如下:
就是找f(x)在所取x值之前一共积分了多少,分段函数就分段考虑,注意累积即可F(x)=0(x
期望不存在如果期望存在,期望是1/x乘上密度函数f(x)在0到无穷上积分,而这个积分是不收敛的因为在0附近f(x)~1,被积函数~1/x,广义积分发散所以Y=1/x的期望不存在
求某一区间的概率,就是在该区间对概率密度函数积分.所以,P(X1/3)f(x)dx=∫(-∞->-3)f(x)dx+∫(-3->1/3)f(x)dx=0+1/6*(1/3+3)=5/9