设非齐次线性方程组(K 1)X1 X2 x3=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:12:49
两个方程组同解的充分必要条件是行向量组等价设方程组1,2的增广矩阵分别为A1,A2考虑分块矩阵H=(A1;A2)--上下放置则r(A1)=r(H)=r(A2)H=110-2-64-1-1-113-1-
原方程组即(2-λ)x1-x2-2x3=05x1-(3+λ)x2-3x3=0-x1+(2+λ)x3=0因为方程组有非零解,所以系数行列式等于0|A|=2-λ-1-25-3-λ-3-102+λ=(λ+1
┏2-453|7┓┃3-642|7┃┗4-81711|21┛→﹙行初等变换﹚→┏10-1-1|0┓┃0100|0┃┗0075|7┛﹙x1,x2,x3,x4﹚=﹙1,0,1,0﹚+k﹙2,0,-5,7﹚
系数行列式=(3+A)A^2由Crammer法则,A≠0且A≠-3时,方程组有唯一解.当A=0时,增广矩阵=111011131110r2-r1,r3-r1111000030000方程组无解.当A=-3
该方程组的系数矩阵为11111111111123-1-2→01-3-4→01-3-4562101-3-40000所以,原方程组与方程组X1+X2+X3+X4=0,x2-3x3-4x4=0同解,令x3=
1111111111112345→0123→0123456701230000所以,原方程组与方程组X1+X2+X3+X4=0,x2+2x3+3x4=0同解,令x3=1,x4=0,得到方程组的一个解为(
系数矩阵的秩为1基础解系含n-1个向量:a1=(-1,1,0,...,0,0)a2=(0,0,1,...,0,0)...an-2=(0,0,0,...,1,0)an-1=(-1,0,0,...,0,1
写出增广矩阵为273163522493172第3行减去第2行×3,第2行减去第1行×1.5~273160-5.5-2.50.5-50-12-51-10第2行乘以-2,第3行加上第2行~27316011
方程组的系数矩阵为120001矩阵的秩为2,有3个未知数,所以基础解系有3-2=1个向量所以得到基础解系为(-2,1,0)^T
系数矩阵的行列式λ111λ111λ=(λ+2)(λ-1)^2.当λ≠1且λ≠-2时,由Crammer法则知方程组有唯一解.当λ=1时,增广矩阵为111111111111->111100000000r(
系数行列式等于01112-1a1-23=3a-12所以a=4
这里的自由未知量是x3取x3=0,代入等价方程组得一个特解:(3,-8,0,6)^T对应的齐次线性方程组的等价方程为x1=-x3;x2=2x3;x4=0即令等式右边的常数都为0得到的取x3=1得基础解
这就是本题的解法
求基础解系时应该令常数项为0即X1=X4+5X5X2=-2X4-6X5X3=0
你写的不对,也不全方程ax²+bx+c=0(a≠0)两根x1,x2都在同一个区间(k1,k2)内要分开口朝上,开口朝下两种情况考察二次函数f(x)=ax²+bx+c当a>0是
非齐次的可以写成AX=B的形式,A是个矩阵,B是个向量.可以看到A={k+1,1,1;1,k+1,1;1,1,k+1},而B={0,3,k},根据非齐次方程解的情况,对A的秩进行判断,可以得到k的值有
先算齐次解x1+x2+x3=0解为x=(1,-1,0),(1,1,-2)齐次通解为x1=s+tx2=-s+tx3=-2t特解x1=1x2=0x3=0非齐次通解为x1=1+s+tx2=-s+tx3=-2
增广矩阵=11123235755681314r2-2r1,r3-5r1111230133-10133-1r1-r2,r3-r210-2-140133-100000所以方程组的全部解为(4,-1,0,0