设非齐次线性方程组Ax=b的系数矩阵的为r,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:37:19
设非齐次线性方程组Ax=b的系数矩阵的为r,
设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b

证明:设k1(α1+β)+k2(α2+β)+⋯+km(αm+β)+kβ=0则k1α1+k2α2+⋯+kmαm+(k1+k2+...+km+k)β=0.等式两边左乘A,由已知Aα

设β是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,

证:设k1α1+k2α2+.,+kn-rαn-r+kβ=0.(*)用A左乘等式两边得k1Aα1+k2Aα2+.,+kn-rAαn-r+kAβ=0.由已知β是非齐次线性方程组Ax=b的解,α1,α2,.

非齐次线性方程组AX=B有解的充要条件是

AX=B有解的充要条件是r(A,B)=r(A)

设β1、β2为线性方程组 AX=B的两个不同解α1.α2是对应的齐次线性方程组AX=0的基础解系,k1、k2为常数

直接加上β1或β2之一也是通解方程组的通解不是唯一的你这个题目像是选择题注意(β1+β2)/2也是特解,(3β1+4β2)/7也是特解(k1β1+k2β2)/(k1+k2)(k1+k2≠0)也是特解再

设x0是非齐次线性方程组Ax=b的一个解,α1,α2,...,αn-r是对应的齐次线性方程组Ax=0的基础解系,证明

证明:(1)显然x0,x0+a1,x0+a2...x0+an-r都是AX=b的解.设k0X0+k1(X0+a1)+k2(x0+a2)+...+kn-r(x0+an-r)=0则(k0+k1+...+kn

设β1,β2是非其次线性方程组AX=b的两个不同解,a1,a2,a3是对应齐次线性方程组AX=0的基础解系,求AX=b通

选B.因为A中的三个向量a1-2a2+a3,-2a1+a2+a3,a1+a2-2a3线性相关.(这个相关性证明可由行列式1-21-21111-2的值为0得出.)

一个非齐次线性方程组AX=b的导出组AX=0只有零解,则AX=b

有唯一解或者无解.因为r(A|B)>=r(A)=n;

非齐次线性方程组Ax=B有无穷解的充要条件

未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷

求线性方程组AX=b的通解

因为r(A)=2所以AX=0的基础解系含3-r(A)=1个解向量故2x1-(x2+x3)=2(1,2,3)^T-(2,3,4)^T=(0,1,2)^T是AX=0的基础解系.而x1=[1,2,3]^T是

设β1,β2是非其次线性方程组AX=b的两个不同的解,η1,η2是对应齐次线性方程组AX=0的基础解系.k1,k2为任意

是对的,d不能证明b1-b2和伊塔1线性无关再问:通解就必须各个解向量线性无关是这样吗?我概念不清楚再答:是导出组的基础解系得线性无关然后再加上一个特解就组成非齐次的通解

已知a,b是非齐次线性方程组AX=B的两个不同的解,c,d是对应齐次线性方程组AX=0的基础解系,k1 ,k2为任意

从题目看,应该是个选择题a+k1c+k2d是AX=B的通解,但还有其他的表示方式.比如(a+b)/2+k1c+k2d也是AX=B的通解.你应该把所有选项贴出来!

已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2,是对应齐次线性方程组Ax=0的基础解系

尽管β1—β2是AX=0的解但α1,β1—β2可能线性相关,或者说它不构成基础解系

某非齐次线性方程组Ax=b的增广矩阵B经过数次行初等变换后为

R(A)=2,R(B)=3,由于R(A)≠R(B),故而方程组无解.

n元非齐次线性方程组Ax=b与其对应的其次线性方程组Ax=0满足( )

a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<

b=a1+a2+3a3,则线性方程组Ax=b的通解为?

我给你个方法,照此完成其他的A=K(1,-1,2)T次方+(1,2,3)T次方AX=b可或得三个特解令X1=0,X2=0,X3=b/(2K+3)这个解记为P令X2=0,X3=0,X1=b/(K+1)这

线性方程组AX=b的增广矩阵

a=3时有解;2) 1    2   -3    1  &n

求四元非齐次线性方程组Ax=b.的通解

四元非齐次线性方程组Ax=b的秩R(A)=2,所以通解有4-2=2个解向量,方程组有解a,b,c,d所以A(a+b)=2b,A(a-2c)=-b,A(a+2d)=3b那么显然A(a+b+2a-4c)=