证明 lim(2n 1) (3n^2 n^3)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:07:21
还是老样子,极限的定义,无限分有限+无限lim(x(n+1)-x(n))/(y(n+1)-yn)存在设lim(x(n+1)-x(n))/(y(n+1)-yn)=a对于任意e>0,存在N使得,对n>N有
任取e>0|原式|N时|原式|
对任意的ε>0,存在N=[1/4ε],当n>N有|(3n+1)/(2n+1)-3/2|=|1/(4n+2)|
lim[(n+3)/(n+1)]^(n-2)=lim[1+2/(n+1)]^(n-2)=lim{[1+2/(n+1)]^[(n+1)/2]}^[(n-2)×2/(n+1)]=lime^[2(n-2)/
对于任意ε>0令N=max(1,3/(4ε))当n>N时|(n^2+n+1)/(2n^2+1)-1/2|=|2n^2+2n+2-2n^2-1|/[2(2n^2+1)]=(2n+1)/[2(2n^2+1
上下同时除以n^2lim(n→∞)(n^-2)/(n^+n+1)=lim(1+1/n+1/n^2)/1=1
|(3n+1)/(2n+1)-3/2|=|1/2(2n+1)|0,存在N=1/ε使得当n>N的时候|(3n+1)/(2n+1)-3/2|
[1+2^(1/2)+3^(1/3)+…+n^(1/n)]/n>[1+1^(1/2)+1^(1/3)+…+1^(1/n)]/n=1[1+2^(1/2)+3^(1/3)+…+n^(1/n)]/n1取极限
T(n+1)=C(2n,n)*x^n=(2n)!*x^n/(n!×n!)=2×4×6×...×2n×1×3×5×...×(2n-1)*x^n/(n!×n!)=2^n*(1×2×3...×n)×1×3×
limn->无限n^n/(n!)^2=limn->无限Π(i=1→n)[n/(i²)]=limn->无限e^ln[Π(i=1→n)n/(i²)]=limn->无限e^Σ(i=1→n
任取ε>0要使︱(2n-1)/(3n+2)-2/3︱
把n换为x,显然,分子分母极限是无穷大,可用洛必达法则,这样很容易得出结论
极限定义:存在自然数N,对于任意的ε(不管多小,一般认为是无穷小,但确定后不变),对于任意的n>N,有a[n]小于这个无穷小量ε也就是不管多么小的一个ε,数列减去一个常数总在某项后接近它,那数列极限就
要证明6|(n^3+n1^3+n2.nk^3),可以分为两步:1.证明(n^3+n1^3+n2.nk^3)是偶数对任意的一个整数x,与x^3同为奇数或同为偶数所以n+n1+n2+.nk与n^3+n1^
提示哪里就是哪里出错了你调用函数fft1没有往里面传递m但是你函数里面用到m了m没定义再问:那怎么加到里面啊???再答:这函数你写的我怎么知道怎么加到里面如果不是你写的看是不是抄错了,或者把m换成n试
考虑级数n^n/(n!)^2后项比前项=[(n+1)^(n+1)/(n+1)!^2]/[n^n/(n!)^2]=[(1+1/n)^n]/(1+n)趋于0
注意lim1/n=0则lim(3n+1)/(2n+1)=lim(3+1/n)/(2+1/n)=(3+lim1/n)/(2+lim1/n)=(3+0)/(2+0)=3/2
由│f(x)-a│=│2x-1-3│=2│x-2│;为了使│f(x)-a│〈ε,则│x-2│〈ε/2;∴对于任意ε〉0,存在δ=ε/2;当0〈│x-2│〈δ,对应的│f(x)-a│=│2x-1-3|〈
用后项比前项:因{2^(n+1)(n+1)!/(n+1)^(n+1)}/{2^n(n)!/(n)^n=2/(1+1/n)^n趋于2/e