证明 lim(根号下n^2-a^2) n=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:56:40
)(1╱根号下n方+1……)啥意思,
这个不是本来就成立么
证明:①对任意ε>0,要使|(√(n+1)-√n)-0|只要|(√(n+1)-√n)-0|=√(n+1)-√n=1/[√(n+1)+√n]1/ε^2即可.②故存在N=[1/ε^2]∈N③当n>N时,n
分子有一晔lim(n→+∞)[√(n^2+n)-n]=lim(n→+∞)[√(n^2+n)-n][√(n^2+n)+n]/[√(n^2+n)+n]=lim(n→+∞)n/[√(n^2+n)+n]=1/
上下乘√(n²+n)+n分子是n²+n-n²=n原式=limn/[√(n²+n)+n]上下除以n=lim1/[√(1+1/n)+1]=1/2再问:有什么通法咩?
设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(
这道题可以用分子有理化来做极限的符号,用三角代替了.其中有一步用到分子分母同时除以n,
设xn=n^n/n!limx(n+1)/xn=lim(1+1/n)^n*(n)/(n+1)=e*1=e那么limn次根号下(xn)=limxn=e又limn次根号下(xn)=limn次根号下(n^n/
呵呵,楼下这位,你这样解答又引出“证:a/n→0”一题了,还是应该用定理来证:对于任意ε,要使|[(n^2+a^2)^(1/2)]/n-1|=|[(n^2+a^2)^(1/2)-(n^2)^(1/2)
楼上的证明在很多细节上是过不去的,首先很多是极限情况,并不能直接认为相等,an递减是得不出来的.还有a(n+1)^2=1/a(n+1)-1/an就算认为是极限也是不对的,因为这相当于在原式两端同时乘以
任意给定正数b,|√(n^2-a^2)/n-1|=|(√(n^2-a^2)-n)/n|=|-a^2/n*1/(√(n^2-a^2)+n)|=N时,n>a^2/b,所以上式
证明:转化为函数f(x)=x^(1/x)的极限f(x)=x^(1/x)=e^{ln[x^(1/x)]}=e^(lnx/x)所以limf(x)=e^[lim(lnx/x)]括号里的极限是个无穷除以无穷的
夹逼准则首先要知道:1²+2²+...+n²=(1/6)n(n+1)(2n+1),中学公式将所有的分母都用√(n^6+n)代替,这样整个式子变大了,结果是:(1/6)n(
lim(√(1-a²/n²)当n趋近于无穷大时a²/n²趋近于0∴原式=√1=1
(n+1)(根号n^2+1-n)*(根号n^2+1+n)/(根号n^2+1+n)=(n+1)*1/(根号n^2+1+n)上下同时除以n=(1+1/n)/(根号1+1/n^2+1/n)=1/1=1
令A=1+1/√2+1/√3+……+1/√N,则A=1+2/(√2+√2)+2/(√3+√3)+……+2/(√N+√N)>2/(1+√2)+2/(√2+√3)+2/(√3+√4)+……+2/(√N+√
设f(n)=[(a^1/n+b^1/n)/2]^n,lnf(n)=n*ln[(a^1/n+b^1/n)/2]令t=1/n,n->+∞,t->0,lnf(n)=ln[(a^t+b^t)/2]/t当t->
|(根号n^2+a^2)/n-1|=|根号(n^2+a^2)-n|/n=a^2/n(n+根号(n^2+a^2))N有|(根号n^2+a^2)/n-1|