证明 矩阵A与其转置A有相同的特征多项式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:07:01
证明 矩阵A与其转置A有相同的特征多项式
设A,B都是N阶矩阵,且A可逆,证明AB与BA有相同的特征值

A^-1表示A的逆,^表示后面的是指数.由A^-1ABA=BA可知AB与BA相似,故AB与BA有相同的特征值.

矩阵与其转置矩阵的乘积为零矩阵 证明原矩阵为零矩阵

直接把矩阵展开写成A=(a11a12……a1na21a22……a2n………………an1an2……ann)然后直接把A’写出来直接乘在一起,关注主对角线上的元素就可以了

设A为n阶矩阵,证明A的转置与A的特征值相同.

A^T指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0A的转置的特征多项式|λE-A^T|=0,因(λE-A)^T=(λE)^T-A^T=λE-A^T所以|λE-A|=|(λE-A

线性代数::一矩阵与其转置矩阵的特征值是否相同?急.为什么?、

相同!因为A与A^T的特征多项式相同,所以它们的特征值相同.|A^T-λE|=|(A-λE)^T|=|A-λE|

如果矩阵A可逆,证明A’(A的转置矩阵)也可逆.

A可逆,∴存在B使得AB=BA=I,(AB)'=B'A'=(BA)'=A'B'=I'=I,∴B'为A'的逆矩阵.

老师好,如何证明矩阵A与其转置的乘积的特征值等于矩阵A的转置与矩阵A的乘积的特征值.

前提是A必须是方阵,否则会相差一些零特征值对于方阵而言更一般的结论是AB和BA的特征值完全相等(计代数重数)证明很简单,比如说直接证明μIABμI的行列式是det(μ^2I-AB),同时又等于det(

怎么证明矩阵A与矩阵A的转置矩阵的特征值相同

设矩阵A经过初等行变换之后,化为上三角矩阵B,则A等价于B矩阵A'经过初等列变换之后,可化为下三角矩阵C,则A'等价于C显然,B的转置矩阵B'=C因为,转置之后对角线上的元素不变,所以,B和C的对角线

矩阵A是一个n*n的对称矩阵,1.证明A+A‘也是对称矩阵.(' 表示转置)

证明:1.因为(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'是对称矩阵2.二次型x'Ax的矩阵即0.5(A+A')所以x'Ax=x'(0.5*(A+A'))x3.由(2)知x'(0.

您好,请问如何证明矩阵A乘该矩阵A的转置为可逆矩阵?

这是个错误结论比如A是3*2矩阵,则AA^T是3阶方阵,其秩不超过2<3,不可逆

设A是实矩阵,证明:A转置乘A与A乘A转置的秩相同.

若Ax=0,则A'Ax=0;若A'Ax=0,则x'A'Ax=0,即(Ax)'Ax=0,故Ax=0.从而方程Ax=0跟方程A'Ax=0通解.所以r(A'A)=r(A);同理有r(AA')=r(A').且

线代题:A的伴随矩阵等于A的转置矩阵,如何证明A是可逆矩阵?

条件应该有A≠0吧.n=2时,设A=abcd则伴随矩阵A*=d-b-ca由转置A‘=A*得a=d,b=-c.当讨论限制为实矩阵,行列式|A|=a²+b²>0,A可逆.复矩阵时有反例

矩阵可逆的证明一个矩阵有:A^2=A,A=E-ab(b为a转置矩阵),如果ba=1,证明A不可逆.我想知道ba=1,可不

"由于|ab|不等于0,则ab方阵可逆,"这段不成立.r(ab)=1=>|ab|=0,ab肯定是不可逆的.从Aab=0,如果A可逆,则A^(-1)*Aab=0=>ab=0这与ba=1矛盾.所以A不可逆

证明:方阵与其转置矩阵相似

这个超出线性代数的范围,高等代数中一般有.证明要用λ-矩阵.A与A'的行列式因子是相同的,所以相似

证明:若矩阵A为正定矩阵,则A的奇异值与特征值相同

对A做谱分解A=QDQ*,显然这一分解也可视作奇异值分解.

设A为n阶矩阵,证明A的转置与A的特征值相同

(λE-A)′=λE-A′,|(λE-A)′|=|λE-A|∴|λE-A|=|λE-A′|,A与A′特征多项式相同,所以特征值也一样.

线性代数:n阶矩阵A与它的转置矩阵A'有相同的特征值

因为特征值是特征方程|λI-A|=0的根,所以要证明特征值相同只要特征方程相同即可令矩阵B=λI-A,根据行列式知识detB=detB'即|λI-A|=|(λI-A)'|=|λI-A'|,因此A和A'

a,b均为n阶方阵,b为幂零矩阵a可逆矩阵,且ab可交换,证明a与a+b有相同的特征多项式

ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question

设A是m*n矩阵,B是m*s矩阵,证明矩阵方程A'AX=A'B一定有解(其中A'为A的转置矩阵)

只需证明A'A的秩等于(A'A,A'B)的秩,即r(A'A)=r(A'A,A'B)首先r(A'A)

证明:矩阵A与其转置A‘有相同的特征多项式,因而也有相同的特征值.

|λE-A|=|(λE-A)^T|=|λE-A^T|,故A与A^T有相同的特征多项式,因而也有相同的特征值.

证明:矩阵A的共轭转置矩阵与A的秩相同

这个可以直接用定义来证明,A^H的行秩和A的列秩相同也可以用极大非零子式来证明但是1楼的证明完全错误,从存在一个A满足r(A)=m,r(A^T)=m+1无法推出r((A^T)^T)也有同样性质.