证明,不存在函数f(x,y)满足∂f ∂x=y,∂f ∂y=x^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:51:52
x→0+则|x|=xf(x)=x/x=1所以x→0+,limf(x)=1x→0-则|x|=-xf(x)=x/(-x)=-1所以x→0-,limf(x)=-1左右极限不相等所以极限不存在
如果上述二元函数在(x,y)趋近(0,0)时的极限存在则要求以任何路径趋近都要极限存在.显然我们只要找到存在一条路劲使得该函数的极限不存在即可.观察函数发现上下均为二次,我们只要凑出1/∞即可,取路径
证明其正极限不存在或负极限不存在或者正极限不等于负极限
极限存在的条件是(x,y)以任何方式靠近(0,0)极限都相等所以证明极限不存在就是找两种不同的方式,使得极限不相等证明如下:取x=y,f(x,y)=x^2/2x=x/2显然极限=0/2=0又取x=-y
怀疑你题抄错了,或者没抄全,连f(0,0)这儿函数没有意义的点都没说明等于几,怎么证连续?(x,y)!这又是什么?再问:二楼正解再答:呵呵,孤陋寡闻了,不过他倒是给做出来啊。还是我来吧,上面是错的,偏
首先,limitcos(x)当x趋紧无穷大时不存在,因为函数振荡.令z=1/x,那么问题变为当z趋于无穷时,证明y=cos^2(z)不存在.这是显然的.(y=cos^2(z)=(1+cos(2z))/
f(x)=x^(1/3)f'(x)=(1/3)x^(-2/3)当x=0时,x^(2/3)=0,取倒数)x^(-2/3)无意义,故f'(0)不存在垂直的x轴的切线即导数为无穷大,在x=0处取得(可画图)
首先,函数在f(0)处是连续的f'(0+)=lim(x→0+)[f(0+)-f(0)]/(x-0)=lim(x→0+)f(0+)/x=lim(x→0+)arctan(1/x)=π/2f'(0-)=li
前半部分是一个很有名的定理,忘了叫什么名字了不过书上肯定都有,就是把连续的极限和离散的极限联系起来的东西.原定理是这么说的:若对任意的{xn},xn->x0,limf(xn)存在且相等,则limf(x
沿y=x趋于原点时,极限为lim(1-cos(x^2+x))/2x^3趋于无穷再问:这样回答老师打了问号,是不是最后的极限不能出现x呀?再答:不是不能出现x,你可以写得再详细一点,用洛必达法则或等价替
当x趋向于0+的时候,此时取绝对值,得到y=1当x趋向0-的时候,去绝对值得到y=-1所以当x趋向0的时候,从两个方向趋向0得到的极限不一样,所以极限不存在
令x=y=1得f(1)=0令y=1/x得f(x*1/x)=f(x)+f(1/x)=0即f(1/x)=-f(x)所以:f(x/y)=f(x*1/y)=f(x)+f(1/y)=f(x)-f(y)
(x,y)沿直线y=kx(k≠1)趋向于(0,0)时,f(x,y)=(x+kx)/(x-kx)→(1+k)/(1-k),极限与路径有关,所以(x,y)趋向于(0,0)时,f(x,y)不存在极限.再问:
LZ快乐男孩的做法是错误的,虽然分母极限为0,但分子的极限也为0,这种属于0/0型的极限,这种极限可能存在,也可能不存在.实际上这是一道比较简单的题目.只要找到两条不同的路径->(0,0)得出的极限值
考虑动点以抛物线y²=kx方式趋于(0,0)函数可以变成k/(k²+1)极限随着k的变化而改变,不趋向一个固定的值,所以,原式的极限不存在.再答:二十年教学经验,专业值得信赖!如果
你去看那个:偏导一定连续,连续不一定偏导.书上定理举的例子再问:哦,谢谢。我去查一下书,还有一个问题麻烦指导一下。用极坐标替换计算二重积分∫∫sin√x^2+y^2dxdy,D:π^2≤x^2+y^2
点(x,y)沿平面直线y=x趋于(0,0)的情形lim(x→0,y=x)[xy/(x+y)]=lim(x→0)(x²/2x)=0点(x,y)沿平面直线y=-x趋于(0,0)的情形lim(x→
二元函数的极限存在是指按x,y变化的任意路径都是趋于同一极限值.所以为了说明极限不存在只要找两个路径,极限值不同即可.正确的一个做法:当x=y^2时,通过计算f(x,y)=1/2,即此时(x,y)→(
不一定e.gf(x)=|x|f'(0+)=1,f'(0-)=-1=>f'(0)doesnotexistbutlim(x->0)f(x)=0