证明1 xln(x 根号1 x的平方)大于根号下1 x的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:34:21
证明1 xln(x 根号1 x的平方)大于根号下1 x的平方
证明;当x大于0时1+xln(x+根号1+x的平方)大于根号1+x的平方

再问:再问:拍照可以吧再答:采纳吧,你的题太多了,还是分开来问的好再问:第二题能看清吗

lim (x->0)[根号下(1+tanx)-根号下(1+sinx)]/xln(1+x)-x²

lim(√(1+tanx)-√(1+sinx))/(xln(1+x)-x^2)=lim(tanx-sinx)/(xln(1+x)-x^2)(√(1+tanx)+√(1+sinx))=(1/2)lim(

xln(x+根号1+x的平方)>根号1+x的平方 -1,(x>0)

设f(x)=xln[x+√(1+x²)]+1-√(1+x²),(x>0)f'(x)=ln[x+√(1+x²)]+x*[1+x/√(1+x²)]-x/√(1+x&

证明当x>0时,xln(x+根号下1+x^2)+1>根号下1+x^2

证明当x>0时,xln(x+√1+x^2)+1>√(1+x^2).【证明】设f(x)=1+xln[x+√(1+x^2)]-√(1+x^2),x>0,则f'(x)=ln[x+√(1+x^2)]+x[1+

微积分第四章课后习题求极限x趋于0时,分子是根号下1+tanx减去根号下1+sinx分母是xln(1+x)减去x的平方不

先把分子有理化,则原式变为lim(tanx-sinx)/2[xln(1+x)-x²]=lim[sinx(1-cosx)]/2x[ln(1+x)-x]sinx和x等价无穷小,约掉原式=lim(

求xln(1+x^2)dx的积分

∫xln(1+x^2)dx=(1/2)∫ln(1+x^2)d(x^2)设x^2=u=(1/2)∫ln(1+u)du=(1/2)[uln(1+u)-∫u/(1+u)du]=(1/2)[uln(1+u)-

证明:1+xln(x+根号1+x2)>=根号1+x2

貌似不是>=是=再问:是>=

帮忙证明不等式1+xln[x+根号(1+x^2)]>根号(1+x^2),x>0成立

设f(x)=1+xln[x+√(1+x^2)]-√(1+x^2),x>0,则f'(x)=ln[x+√(1+x^2)]+x[1+x/√(1+x^2)]/[x+√(1+x^2)]-x/√(1+x^2)=l

证明不等式当x>0,1+xln(x+√(1+x^2)>√(1+x^2)

利用求导公式很容易就可以证明,设f(x)=xln(x+√(1+x^2))-√(1+x^2)+1,对其求导,即可得出f'(x)=ln(x+√(1+x^2)),若x>0,那么f'(x)>0,另外可求出,f

∫xln(x∧2+1)dx

答:∫ xln(x∧2+1)dx=(1/2) ∫ ln(x^2+1) d(x^2+1)=(1/2)*(x^2+1)*[ln(x^2+1)-1]+C再问:���˵

证明f(x)=ln(x+【根号下x的平方+1】)是奇函数.

因为f(x)=ln(x+【根号下x的平方+1】)所以f(-x)=ln(-x+【根号下x的平方+1】)f(x)+f(-x)=ln(x+【根号下x的平方+1】)+ln(-x+【根号下x的平方+1】)=ln

证明不等式当x>0时,1+xln(x+(1+x)^(1/2))>(1+x)^(1/2)二楼的方法很新颖。三楼为什么x→0

令y=(1+x)^(1/2);so:x=y^2-1;(y>1)f(y)=1+y^2*ln(y^2+y)-y;f'(y)=2y*ln(y^2+y)+y^2*(1/y^2+y)*(2y+1)-1=2y*l

求不定积分∫xln(x+1)dx

∫xln(x+1)dx=∫ln(x+1)d(1/2*x^2)=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx=1/2

y=xln(x+根号下x的平方+1),dy/dx=

x/Sqrt[1+x^2]+ln(x+Sqrt[1+x^2])

对任意实数x,证明不等式 :1+xln[(x+根号(1+x^2)]>=根号(1+x^2)

这个题蛮简单的嘛你看下数学课本上的例题啊!任意x这个要分范围来界定比如:x>0;x=0;X再问:那你可以把x

求极限lim{xln(1+2/x)}

题目不完整.缺x趋向?

求 [根号(1+tanx)-根号(1+sinx)]/[xln(1+x)-x平方]极限 x趋向0

lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx

证明:1+xln(x+根号(1+x^2))>根号(1+x^2)

定义f(x)=1+xln(x+√1+x^2)-√1+x^2则f'(x)=1+arshx注意ln(x+√1+x^2)=arshx以及(arshx)'=1/√1+x^2考虑到(arshx)'=1/√1+x

证明1+xln(x+根号(x^2+1)>=根号(x^2+1)

f(x)=1+xln[x+√(x^2+1)]-√(x^2+1)f'(x)=ln[x+√(x^2+1)]+x/√(x^2+1)-x/√(x^2+1)=ln[x+√(x^2+1)]f'(-x)=ln[-x