证明:如果A是正定矩阵,那么A-1也是正定矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 21:16:05
证明:如果A是正定矩阵,那么A-1也是正定矩阵
若A是正定矩阵,证明(A*)*也是正定矩阵

这里用到A是正定矩阵的一个等价条件:A正定等价于A的特征值λ都>0.我们现在想知道如果A是正定,那么A的伴随是否正定呢?也就是A*的特征值是否也都>0呢?考虑Aa=λa,A*Aa=λA*a,|A|a/

如果A是正定矩阵,证明A的逆矩阵也是正定阵

若A是正定的,则由1.4可知:存在实可逆矩阵C使A=CTC∴A-1=(CTC)-1=C-1(C-1)T∵C可逆∴C-1也是实可逆矩阵∴有A-1也是正定矩阵.

设实矩阵A是正定矩阵,证明:对于任意正整数 Ak也是正定矩阵

A为正定则特征值全为正A=P*[v1..*P^-1vn]A^k=P*[v1^k..*P^-1vn^k]v1^k..vn^k也是正数即A^k的特征值全为正所以A^k也是正定矩阵

A是n阶正定矩阵,证明A的伴随矩阵也是正定矩阵

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

证明如果一个正交矩阵是正定矩阵,那么它必为单位矩阵

要意识到正交矩阵的特征根是1或-1然后矩阵正定,特征值全为1.Ax=ax,a为特征值,x为特征向量,则两边做转置x'A'=ax'.于是有x'A'Ax=ax'ax由于A正交,左边为x'x,而右边为aax

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

怎样证明矩阵A为正定矩阵

正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,

设实矩阵A是正定矩阵,证明:对于任意正整数 Ak也是正定矩阵,

Ak是A的k次方?A的特征值是λ则A^K的特征值是λ^k(这个是常用结论)A是正定矩阵则A所有特征值>0λ^k>0所以A^K的特征值也全都大于0所以A^k是正定矩阵

设A,B均是n阶正定矩阵,证明A+B是正定矩阵

转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定

证明:如果a是n阶正定矩阵,则a*及a+a*也是正定矩阵

1、对称性显然2、a*=|a|a^(-1)3、a正定则特征值全为正,从而a^(-1)的特征值为正4、容易看出a*,a+a*的特征值为正,正定

已知A-E是n阶正定矩阵,证明E-A^(-1)也是正定矩阵.

(A-E)(A-E)T=AAT-AT-A+E=EAAT=A+ATATA=A+AT.(1)由题目要证明的可知A可逆(1)两边取逆矩阵A^(-1)(AT)(-1)=A^(-1)+[A^(-1)]T..(2

证明 如果A,B是正定矩阵,那么A+B也是正定矩阵.

因为A,B都是正定矩阵所以对任意n维列向量x≠0,x'Ax>0,x'Bx>0所以x'(A+B)x=x'Ax+x'Bx>0所以A+B是正定矩阵.注:x'=x^T

如果A是n阶正定矩阵,B是n阶实反对称矩阵,证明 A-BTB是 正定矩阵.

yajun宝贝,由反对称矩阵定义知有B=-B^T,于是A-B^TB=A+B^2,由正负矩阵的定义有X^TAX>0,于是X^T(A-B^TB)X=X^TAX-X^TB^TBX=X^TAX+(B^TX)2

矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?

答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

证明设矩阵A是正定矩阵,证明A-1次方也是正定矩阵

你说的是A的逆吧.A的特征值全为正,A逆的特征值都为A特征值的倒数,所以也全为正,所以正定.再问:�ܲ���˵˵ȫ���

证明 如果一个实对称矩阵A的特征值皆大于0,那么它是正定的

因为矩阵A为实对称矩阵所以存在可逆矩阵P,使得P^TAP=Λ=diag(λ1,λ2,...λn)因为特征值λi>0所以矩阵Λ为正定矩阵所以矩阵Λ的正惯性指数=n又因为矩阵A合同于矩阵Λ所以矩阵A的正惯

如果A是正定矩阵,那么A一定是实对称矩阵对吗?

显然不对,比如矩阵A:第一行3,4第二行4,6.这不是对称阵,但是它是正定矩阵.正定判定如下:计算二次型(x1,x2)A(x1,x2)^T=3(x1^2+2x1x2+2x2^2)=3((x1+x2)^