证明:当n为正整数时,n的3次方-n的值必为6的倍数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:12:21
1.n∧3-n=n(n^2-1)=n(n+1)(n-1)-(1)-n为正整数,则n,n+1,n-1中必有一个3的倍数-(2)-n为正整数,则n,n+1中必有一个2的倍数所以n(n+1)(n-1)为6的
N^3-N=N(N-1)(N+1)连续三个整数相乘,其中至少有一个偶数,至少有一个3的倍数,所以能被6整除.
n的三次方+3乘(n的平方)+2n=n*(n+1)(n+2)其中必有一个为3的倍数,所以n的三次方+3乘(n的平方)+2n所表示的数必能被3整除
证明:法1.用二项式展开因为2^N=(1+1)^N=C(N,0)+C(N,1)+C(N,2)+...+C(N,N-1)+C(N,N)当N>=3,有2^N=(1+1)^N>=C(N,0)+C(N,1)+
定义一种对正整数N的“F”运算:1,当N为奇数时,结果为3N+52,当N为偶数时,结果为2的K次方分之N(其中K为使2的K次方分之N为奇数的正整数),并运算重复进行,例如,取N=26,则26(F2,第
求解过程也非常简单的,你可以知道,奇数的最大奇因数是因本身,这个是一个不变的道理,正是基于此点的考虑,可以将Sn进行一次的重组,重组当然就是重新组合了!Sn=N(1)+N(2)+N(3)+N(4)+.
采用数学归纳法证明3^n>(n+2)2^(n-1)(n>2)当n=2时,3^2=9(n+2)2^(n-1)=8,显然有3^n>(n+2)2^(n-1)假设当n=k时有3^k>(k+2)2^(k-1)当
N*N*N-N=N*(N*N-1)=(N-1)*N*(N+1)即等于相邻的三个数相乘,可知其中至少有一个偶数和一个三的倍数,故必是6的倍数
n*4表示n乘4,n*4-20n*2+4是个偶数.如果是n^4-20n^2+4,则:n^4-20n^2+4=(n^2-2)^2-16n^2=(n^2-2-4n)(n^2-2+4n)所以是合数
数学归纳法(1)当n=1时1^3-1=0能被6整除当n=2时2^3-2=6能被6整除(2)假设当n=k时(k为正整数)k^3-k能被6整除则当n=k+1时(k+1)^3-(k+1)=(k+1)[(k+
f(x)=x^(1/x),x>0ln[f(x)]=(1/x)lnx两边求导,f'(x)/f(x)=(1-lnx)/x^2故f'(x)=[x^(1/x)]*(1-lnx)/x^2f'(x)>0等价于1-
(ab)^n=a^n*b^n这就是幂的性质.
你这是想要证明哥德巴赫猜想啊目前还没有人能证明出来
数学归纳法(1)当n=1时1^3-1=0能被6整除当n=2时2^3/2=6能被6整除(2)假设当n=k时(k为正整数)k^3-k能被6整除则当n=k+1时(k+1)^3-(k+1)=(k+1)[(k+
(1)n^3--n=n(n^2-1)=n(n+1)(n-1)=(n-1)n(n+1)因为n-1+n+n+1=3n,是三的倍数,所以原因式是三的倍数若n为正奇数,则n-1和n+1为偶数,原因式是二的倍数
n^3-n=n(n^2-1)=n(n+1)(n-1)因为n为正整数所以原式为三个连续的自然数相乘,所以值必为6的倍数
(1)用数学归纳法.A(n+1)=An^2-nAn+1=An(An-n)+1>=An*2+1>=(n+2)*2+1=2n+5>n+1+2(2)因为an>=n+2,所以an-n>=2A(n+1)=An(
n的3次方减n=(n-1)n(n+1)是3个连续的整数相乘而6=2*33个连续整数必定有偶数且有3的倍数因此必定能被6整除!
N等于1,根号2大于1小于2再问:34的整数部分,小数部分?!!