证明:每个n维欧式空间都可以表示成n个一维正交子空间的直和.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:54:52
证明:每个n维欧式空间都可以表示成n个一维正交子空间的直和.
设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基

两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.

高等代数习题求教 设V为n维欧式空间,试证明从V的一个标准正交基(I)到基(II)间的过渡矩阵为正

这个只需要说明:A,B为正交矩阵时,AB也是正交矩阵,这是显然的,因为AB(AB)^T=E所以AB是正交矩阵,从而得到结论……

正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.

根据定义,要证明是正交变换,只要证明该变换保持内积不变就行了.设a,b是V中的两个向量,a在标准正交基下的坐标是X=[x1,x2,...,xn]'('表示转置)b在标准正交基下的坐标是Y=[y1,y2

线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)

记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方.注意到要证不等

哪里可以买到好的欧式灯呢?欧式灯/欧式吊灯/欧式灯具

朋友你是哪个地区的人?如果是成都市我知道有金府灯具城、九眼桥灯具城、八一灯具城、东城灯具城、五块石灯具城、府河灯具城都有卖的;如果你不是成都市就请到各个装饰城如博美装饰城、红星美凯龙装饰城、川豪装饰城

设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则

a1,a2,...an.是n唯欧式空间R的一组基,等价于a1,a2,...an线性无关,等价于以(a1,a2,...an)为系数矩阵的齐次方程组只有零解假设存在b1-b2不等于0,使得(b1,ai)=

设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2

将a1,a2...am扩充为V的标准正交基a1,a2...am,...,an任一向量a可表示为a=k1a1+k2a2+...+kmam+...+knan(a,ai)=ki||a||^2=(a,a)=(

证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个

用反证法吧.假设a1…an+2(下标,后同)两两互为钝角n维空间任意n+1个向量线性相关,即存在不全为0的数k1….kn+1使得k1a1+…+kn+1an+1=0两边跟an+2内积,k1<a1,an+

在n维欧式空间中,不存在n+1个两两正交的非零向量,为什么?

只要证明两两正交的非零向量线性无关即可,用线性无关的定义去证明.再问:我要解答过程再答:我只给提示

关于线性代数 线性空间 和 欧式空间

欧式空间V有有限的标准正交基,个数为dimV ,设dimV=n,任何n维欧氏空间都与R^n同构正交阵行向量或列向量是单位向量.即元素的平方和为1,n*(1/4)^2=1 所以n=1

为什么n维线性空间中的n个线性无关的向量都可以构成它的一组基?

在空间中任取一个向量b加入这n个线性无关的向量ai(i=1,2,...,n)那么这n+1个向量一定是线性相关的故存在一组不全为0的ki(i=1,2,...,n)和c使得k1*a1+k2*a2+...+

试证:每一个n维线性空间都可以表示成n个一维子空间的直和

设a1,a2,...,an是n维空间V的一组基则V=(直和)L(a1)+L(a2)+...+L(an)其中L(ai)为ai生成的子空间,L(ai)={kai}由于a1,a2,...,an是V的基,所以

正交变换证明设V是n维欧式空间 a b属于V 且\a\=\b\ 证明 V有正交变换T使 T(a)=b

a=0时必有b=0,线性变换T0=0,结论显然成立;a≠0时:(εi、ηi为两组标准正交基)令a=∑xiεi,由于(a,a)=(b,b),(b-∑xiηi,b-∑xiηi)=0,b-∑xiηi=0,b

试证明如果线性空间中的每一个向量都可以唯一写成为该空间中n给定向量的线性组合,那么该线性空间是n维的

从线性空间的基的定义可以知道,从线性空间的维数n的定义可以直接导出.再问:请问证明过程怎么写啊再答:  不好意思,没看全。  法一:直接法  如果线性空间中的每一个向量都可以唯一写成为该空间中n个给定

线性代数N位向量欧式空间问题

a2=(1,0,-1),a3=(-1,0,1)

证明n维向量空间可以写成n个一维向量空间的直和

设a1,a2,...,an是n维空间V的一组基则V=(直和)L(a1)+L(a2)+...+L(an)其中L(ai)为ai生成的子空间,L(ai)={kai}由于a1,a2,...,an是V的基,所以

N维向量空间向量的秩,证明题

充分:可证(1)A可以由a1,a2.ar表示(2)a1,a2.ar是线性无关的,则可知a1,a2.ar是最大线性无关组.(1)A与a1,a2.ar等价说明A中任何向量可由a1,a2.ar表示.(2)反