证明:集合 P 对于矩阵的加法和标量的乘法构成实数域上的线性空间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:37:38
设x=a+b√2,y=c+d√2,其中a,b,c,d∈Q,因为QM对于加法,减法,乘法和除法的运算是封闭的,所以x+y=(a+c)+(b+d)√2∈M,x-y=(a-c)+(b-d)√2∈M,xy=(
如果是矩阵A*矩阵B打开你的excel输入你的矩阵A和矩阵B后,选出和结果一样大小的单元格输入=MMULT(矩阵A,矩阵B)按Ctrl+Shift+Ente
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
V={A|A上三角矩阵}由于矩阵的加法与标量乘法性质,所以对线性运算性质是不证自明的.只要证明:对加法与标量乘法的封闭性1)A,B∈V,上三角矩阵+上三角矩阵仍然是上三角矩阵,故A+B∈V2)A∈V,
这不是显然的吗,这个集合包含一切聚点
数域上全体矩阵记为,全体可逆矩阵记为,全体行列式为1的矩阵记为.(1)证明依矩阵的加法和乘法构成环.(2)证明依矩阵的加法和乘法构成非交换环.(3)证明为的子环.2.掌握关系的矩阵表示及复合关系的矩阵
(2)(a^p)^(p-1)=(a^p)^[p^(p-2)]≡a^[p^(p-2)](费马小定理)=(a^p)^[p^(p-3)]≡a^[p^(p-3)]≡.≡a^[p^1]≡a(modp)(3)由费
这其实是个满秩分解的矩阵问题根据幂等矩阵的定理,若A为幂等矩阵,则存在一个可逆矩阵P使得(P-1)AP=E000E为单位矩阵,(P-1)为P的逆.则A=PE0(P-1)00令Q=E000因为对角矩阵是
只需说明V对矩阵的加法及数乘运算封闭:两个上三角矩阵的和仍是上三角一个数乘上三角矩阵仍是上三角矩阵所以V是线性空间.其维数为n+(n-1)+...+1=(n+1)n/2再问:维数是怎么计算的呢为什么这
不能.因为线性空间要求对运算封闭,E-E=0不可逆,即可逆矩阵的线性组合不一定可逆故n阶可逆矩阵所成的集合对矩阵加法和数乘运算不能构成R上的线性空间.
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
(1)(A-E)(A+2E)/2=E,所以可逆,其逆就是(A-2E)/2(2)行互换,相当于A乘以初等矩阵,初等矩阵可逆,所以B可逆
(1)是(2)是(3)是因为对于同阶方阵构成的集合是线性空间所以只需证明对矩阵的加法及数乘运算封闭如(2)对称矩阵的和仍是对称矩阵;对称矩阵的k倍仍是对称矩阵.
在|*|_p的单位球S^(n*n-1)上定义函数f:S^(n*n-1)-->R^+,f(s)=|s|_q/|s|_p=|s|_q因为在|*|_p的S^(n*n-1)上两个范数都>0,所以定义是成立的,
3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j
做R+到R的映射f:x-->logx.根据其图像可知,这是一个一一对应(单射&满射).因为xω’y=xy--->log(xy)=logx+logy=logxωlogy,所以映射f保持运算.故f是R+到
如何证明全体上三角矩阵,对于矩阵的加法与标量乘法在实...再问:你好再问:在吗
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩
设V={f(A)|f(x)是实系数多项式}因为矩阵的加法和数乘满足线性空间的8条算律,所以,只需证明V对运算封闭即可.对V中任意f(A),g(A),则h(x)=f(x)+g(x)是实系数多项式,所以f
建议看看《近世代数》再问:请问证是环和域有什么不一样??再答:肯定不一样,稍等一下给你个链接看看http://wenku.baidu.com/view/a43de24ae45c3b3567ec8b57