证明ABCD共面对空间任一点O有OD=xOA yOB zOC,其中x y z=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:30:14
向量BA,向量CA,向量0A线形无关,且向量AM=向量BA+向量CA-向量0A,所以向量BA,向量CA,向量AM线形无关,因此:点M不与A、B、C共面.
由于G是三角形ABC的重心,则有向量GA+向量GB+向量GC=零向量,即向量OA-向量OG+向量OB-向量OG+向量OC-向量OG=零向量故向量OA+向量OB+向量OC=3向量OG即λ=3
(1)因为OA⊥α,所以OA⊥AP,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x-1)2+(y-1)2+(z-1)2=x2+y2+z2,化简得:x+y+z=3.(2)设平面α与x轴、
向量AB=OB-OA=b-a向量DC=OC-OD=c-d平行四边形中有向量AB=DC故有b-a=c-d即有a-b+c-d=0向量选择B
过O点作两组对边的垂线(即平行四边形的高),证明S1+S3=12S▱ABCD,S2+S4=12S▱ABCD.过O点作EF⊥CD,垂足为F,交AB于E点,∵ABCD是平行四边形,
过O作MN平行于AB,分别交AD和BC于M和N点,
-1假设ABCD四点构成一个正方形且O点为对角线的交点则AO=BO=CO=DO进一步可得AO=1/3BO+1/3CO+1/3DO又因为它们是向量则AO=-OA所以-(1/3+1/3+1/3)=-1
证明如下:第一步,假定圆I恰好是内切圆.易证AE=AF,BD=BF,CD=CE,由塞瓦定理,知AD,BE,CF共点.第二步,假设不是内切圆.思路如下,你造一个三角形,让该圆是新三角形的内切圆即可.设点
以下所有大写字母都表示向量∵是平行四边形∴AD=BC=BO+OC=-OB+OC=-b+cOD=OA+AD=OA+BC=a-b+c
因为平面PAD⊥平面ABCD,平面PCD⊥平面ABCD,PD∈平面PAD,PD∈平面PCD,所以PD⊥平面ABCD,又因为AC∈平面ABCD,所以PC⊥AC,在菱形中AC⊥BD,PD∈平面PBD,BD
建议你直接记住结论:上面的OM等应该都是向量下面的也都是向量:ABC三点不共线O在平面ABC外则M在平面ABC上的充要条件就是OM=xOA+yOB+zOC且x+y+z=1这个可以类比平面向量ABMO共
由D,AM=OM-OA=(1/3)(OB-OA+OC-OA)=(1/3)(AB+AC),∴向量AM,AB,AC共面,即M,A,B,C四点共面.
OP(向量)=XOA+YOB+ZOC则X+Y+Z=1》X+Y+Z=1填:充要条件.
这是一个定理,等于-2再问:求具体解析再答:-2,后面三个向量的系数之和必须等于1
证明:由三角形两边之和大于第三边可知道,OA+OB>ABOA+OD>DAOB+OC>BCOD+OC>CD上面四个不等式,左边相加>右边相加得到:2(OA+OB+OC+OD)>AB+BC+CD+DA,因
楼上想法够搞笑的,是向量PA之类的PA还能分家啊?PO=PA+AO=PB+BO=PC+CO=PD+DO=PA1+A1O=PB1+B1O=PC1+C1O=PD1+D1OAO+C1O=BO+D1O=CO+
证明:过点O作EG垂直于AB,与AB交于E,与CD交于G过点O作FH垂直于BC,与BC交于F,与AD交于H由勾股定理得AO²=AE²+AH²CO²=CF
原式可化为:(PA-PO)+(PB-PO)=(PO-PC)+(PO-PD)即OA+OB=CO+DO(1)因为四边形ABCD是平行四边形,O为中心所以向量OA=COOB=DO所以(1)式成立,所以……可
你题目错了应该是求证ABCP四点共面用向量方法证明四点共面应转化为不共线两向量共面的问题14点构成2直线平行2有3点共线34点构成的2个向量共线满足任一条件