证明xf(sinx)dx=f(sinx)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:18:59
太多公式不好打 为了方便显示使用word
移到一边,积分限内:(x-π/2)f(sinx)令x-π/2=ppf(Cosp),P积分限为-π/2至π/2,p为奇函数,f(Cosp)为偶函数,pf(Cosp)为奇函数,对称区间中积分为0.再问:你
f(x)=(sinx/x)'=(xcosx-sinx)/x²分部积分,∫xf'(x)dx=xf(x)-∫f(x)dx=(xcosx-sinx)/x-sinx/x+C=(xcosx-2sinx
第一题:令x=π-t,∫0到πxf(sinx)dx=-∫π到0(π-t)f(sint)dt=∫0到πf(sint)dt-∫0到πxf(sinx)dx看出来没,2∫0到πxf(sinx)dx=∫0到πf
f(x)的一个原函数为sinx,则f(x)=(sinx)'=cosx;∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=x·cosx-sinx+C
第一问我比较确定,不知是不是打错了/>再问:û�����⣬��������2����,���Բ���д���㿴����������ô再答:��Ŀ���ˣ����f(sinx)����sinx�����
∫(上π,下π/2)xf(sinx)dx=(令t=x-π/2)=∫(上π/2,下0)(t+π/2)f(sint)dt=∫(上π/2,下0)tf(sint)dt+π/2∫(上π/2,下0)f(sint)
首先说明一下sinx/x原函数不能用初等函数表达的,历代数学研究者公认的.下面这道题如下显然这题有初等函数解的话,那么直接可以得出sinx/x是可以用初等函数表达的.如果只是要一个非初等的解的话,完全
左边=-cosπ+cos0=2右边=2(-cosπ/2+cos0)=2原式成立再问:是f(sinx),不是sinx再答:抱歉,没仔细看题呵。令x=(π/2)-t则∫(0,π/2)f(sinx)dx=∫
∫[0,π](xsinx)/(1+cos²x)dx=∫[0,π](xsinx)/(2-sin²x)dx,设f(x)=x/(2-x²),则f(sinx)=sinx/(2-s
∵∫xf(x)dx=sinx+C∴xf(x)=(sinx)'=cosxf(x)=cosx/x
∫f(x)dx=sinx+Cf(x)=(sinx)'=cosx∫xf'(x)dx=xf(x)-∫f(x)dx=xf(x)-sinx+c1=xcosx-sinx+c
证明:令x=π-t,则x由0到π,t由π到0,dx=-dt原式记为I则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt=-(积分区间π到0)∫(π-t)f(sin(t)dt=(积分区间0到
f(x)=(sinx/x)'=(xcosx-sinx)/x^2∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=x*(xcosx-sinx)/x^2-sinx/x+C=cosx-2sin
令u=π-x,du=-dx,u:π--->0,则∫[0--->π]xf(sinx)dx=-∫[π--->0](π-u)f(sin(π-u))du=∫[0--->π](π-u)f(sinu)du=π∫[
∵∫f(x)dx=sinx+C∴f(x)=(sinx)'=cosx∫xf(x)dx=∫xcosxdx=∫xdsinx=xsinx-∫sinxdx=xsinx+cosx+C希望能看懂,