证明Yn依概率收敛于12

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:51:45
证明Yn依概率收敛于12
数列Xn有界,N趋近于无穷时Yn=0,证明N趋近于无穷时,Xn*Yn=0

由Xn有界,所以存在常数M>0有|Xn|0,存在自然数N,当n>N时|Yn-0|=|Yn|所以有当n>N时|XnYn-0|=|Xn||Yn|

随机变量X依概率收敛于a,Y依概率收敛于b,又设函数个g(x,y)在点(a,b)连续,则g(X,Y)依概率收敛于g(a,

用epsilon-delta语言证再问:这个方法用在数学分析里行,可是概率是测度,所以不能直接这样证明。有没有别的方法证呢?再答:就是epsilon-delta语言证,对任意epsilon>0,存在d

收敛数列的有界性问题设数列{Xn}有界,又lim Yn=0,证明:lim XnYn=0.囧么办?111

|xn|≤M-Myn≤xn.yn≤Myn-Mlim(n->∞)yn≤lim(n->∞)xn.yn≤Mlim(n->∞)yn0≤lim(n->∞)xn.yn≤0=>lim(n->∞)xn.yn=0

如何从依分布收敛推导出依概率收敛?

用定义,考虑退化分布,很容易证.

设Yn=X(n-1)+2Xn,n=1,2,...证明:当数列Yn收敛时,数列Xn也收敛.

(3X(n-1),3Xn)min=|f(x)/sinx|=|求和bk|我期待正确解答,题目很好啊!

证明概率以1收敛. 

根据Kolmogorov的ThreeSeriesTheorem(http://en.wikipedia.org/wiki/Kolmogorov%27s_three-series_theorem),Tn

概率论,依概率收敛问题

这里得假设两个正态总体是独立.显然X1Y1,X2Y2,...,XnYn是独立同分布的.(服从什么分布我们不管,大数定律中也没有要求)而E(XiYi)=E(Xi)E(Yi)=0,于是由大数定律可得(1/

请问这个问题的第二个问:怎么证明它是依概率收敛的?

n趋于无穷大时,可以把第二个e^n看作是0测度点,于是Zn就是0,依概率收敛到0.

设{Xn}收敛,{Yn}发散,则{Xn*Yn}发散吗?

无法判断.xn=1/2^m,yn=2^nxn*yn=2^(n-m)n>=m,发散n

如何证明有界不收敛数列必有两个收敛于不同极限的子列?

证明:任取一收敛子列(一定存在)设其极限为a,则在a的一充分小领域外,一定有这一有界数列的无限项(仍然有界),从而有收敛子列其极限一定不等于a再问:在充分小的邻域外应该只有有限项了啊,因为从n>N开始

怎么证明 若数列An收敛于a,则数列|An|收敛于|a|

再问:可以告诉我图片在哪找的吗?|An|-a=|An-a||An-a|=||An|-|a||不懂、、再答:Mathtype自己编辑再问:对不起,智商不够用,An小于0是什么意思?再答:我是分情况讨论,

随机变量依概率收敛和数列收敛异同

随机变量本质上是一个实值函数,所以它的收敛应该和函数列的收敛去比较.

证明函数依测度收敛若{fk(x)}在E上依测度收敛于f(x).证明{|fk(x)|}在E上依测度收敛于|f(x)|.

由于{fk(x)}在E上依测度收敛于f(x),则任取e>0,limm({x属于E:|fk(x)-f(x)|>e})=0k趋于无穷大又由于||fk(x)|-|f(x)||e时必有|fk(x)-f(x)|

数列{xn}收敛,数列{yn}发散,则数列{xn+yn}{xn-yn}{xn·yn}收敛性如何?

{xn+yn}、{xn-yn}发散{xn*yn}可能收敛,可能发散.

若数列Xn收敛于a,是证明数列|Xn|收敛于|a|.反之是否成立.

因为Xn收敛于a,即当n—>无穷大时,|Xn-a|-->0或lim|Xn-a|=0由于lim|Xn-a|=lim||Xn|-|a||=0所以|Xn|收敛于|a|反之不成立,1楼已经举例说明了.用逻辑的

请问依概率收敛与函数极限收敛的区别?

依概率收敛是对于随机变量来说的.一个随机变量序列(Xn)n>=1依概率收敛到某一个随机变量X,指的是Xn和X之间存在一定差距的可能性将会随着n的增大而趋向于零.而函数收敛是对于函数来说的.是对于任意的