证明与对角矩阵可交换的矩阵一定是对角矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:57:07
证明与对角矩阵可交换的矩阵一定是对角矩阵
证明实对称矩阵与对角矩阵相似

求此矩阵的特征多项式|A-λE|比较麻烦.2-λ1/n1/n1/n……1/n1/n4-λ1/n1/n……1/n.1/n1/n1/n1/n……2n-λ先说明特征值不等于2k-1/n,k=1,2,...,

矩阵可交换的条件线性代数

两个矩阵一样~是其中一种典型的情况.楼主问题不清楚~什么条件下交换?+-?*/?

rt.证明:如果矩阵A与所有的n阶矩阵可交换,则A一定是数量矩阵,即A=aE

记A=aij用Eij将第i行第j列的元素表示为1,而其余元素为零的矩阵.因A与任何矩阵均可交换,所以必与E可交换.由AEij=EijA得aji=aiji=j=1,2,3,...n及aij=0i不等于j

证明:与全体n阶方阵都乘法可交换的矩阵一定是数量阵.

写起来很麻烦.这是个充要条件.设n阶方阵为A=(aij),设B=(bij)与A可交换,AB=BA,展开比较就行,会发现B的非主对角元全是0,主对角元是同样的数

线性代数对角矩阵的证明

手写也是这么写,不明白为什么电脑写的你就看不懂

证明实对称矩阵一定能够与对角矩阵相似

n阶实对称矩阵A算出特征根然后可以求出n个特征向量以n个特征向量为列向量的矩阵设为P则A=P∧P^(-1),其中∧为相似的对角矩阵,对角线上的值即为特征根.这是具体的求法,严格的证明需要用到矩阵二次型

线性代数问题:与对角矩阵合同的一定是实对称矩阵么?

与对角矩阵合同的矩阵一定是对称矩阵但不一定是实矩阵

可交换矩阵的条件是什么?

好像一般可逆矩阵都只有那样求,没有其他办法...pAx=kpx后面的那个是对称矩阵才能用吧~查看原帖>>满意请采纳

证明与对角线上互不相同的对角矩阵和交换的矩阵必是对角矩阵

证:设B=(bij),A=diag(a1,a2,...,an),i≠j时ai≠aj.有AB=BA.则a1b11a1b12...a1b1na2b21a2b22...a2b2n......anbn1anb

求解一个高等代数题:证明:n级矩阵A与所有n级矩阵可交换,那么A一定是数量矩阵

先证与所有对角矩阵可交换的矩阵都是对角矩阵,所以A一定是对角矩阵再证A与所有只有一个元素为1的矩阵(E(i,j))都可交换即得

求与所有二阶方阵可交换的矩阵.

结合你刚才问的第1题考虑1000可得与所有二阶方阵可交换的矩阵为2阶数量矩阵,即形式为a00a的矩阵

对角矩阵的可交换矩阵也一定是对角矩阵,这个命题如何证明啊

结论不对.En是对角矩阵,它与任一n阶方阵可交换.是不是要加个条件:对角矩阵中主对角线上的元两两不同?!再问:恩恩!!不错啊,就是diag(a1,a2....an)各不相同,谢谢啊,怎么推呢请问??~

设上三角矩阵A的主对角线上元素互异,证明A能与对角矩阵相似

根据“上三角矩阵A的主对角线上元素互异,”可以推得“上三角矩阵A有n个互不相等的特征值(为主对角线上元素)”所以可得A能与对角矩阵相似

矩阵与对角矩阵相似的充要条件

定理5.3,因为其实最小多项式就是等于第N个不变因子(易证),第N个不变因子若没有重根,则说明其特征多项式是一次因式的乘积,所以是可以对角化的

A是对角矩阵,证明与A可交换的矩阵也为对角矩阵

题目少了条件,必须加上对角元素互不相同才可如图证明结论.经济数学团队帮你解答,请及时采纳.

线性代数矩阵题证明:与对角矩阵A=diag(a1,a2……an)(其中a1,a2……an两两不相等)可交换的矩阵必定是对

证:设B=(bij),A=diag(a1,a2,...,an),i≠j时ai≠aj.有AB=BA.则a1b11a1b12...a1b1na2b21a2b22...a2b2n......anbn1anb

如何证明可与准对角矩阵交换的只能是准对角矩阵

问题不对.设E是n阶单位矩阵,n>1,它同时也是对角矩阵,当然也是准对角矩阵,但E与任何矩阵都是可交换的.(这里认为准对角矩阵应至少有两个分块,否则任意方阵都可视作一阶分块的准对角矩阵.)我见过一个类

分块对角矩阵改变主对角元次序后与原来的矩阵相似,要怎么证明

0EnEm0乘Am00Bn乘0EmEn0等于Bn00Am再问:那对于分成更多块的分块对角矩阵就是以上面这个过程为基础进行多次变换吗?再答:是的.完全类似

证明:若n阶矩阵A与B可交换,则A与B的任意多项式f(A)与f(B)也可交换

为了证明这个命题,只需要证明A^k与B^m次方可以交换就可以了.因为A与B的任意多项式f(A)与f(B)相乘展开的每一项都是A^k*B^m的形式.由于A与B可交换,AB=BA,从而A^2*B=AAB=