证明以AB在抛物线准线上,1 绝对值FA 1 绝对值BF=2 p

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:57:13
证明以AB在抛物线准线上,1 绝对值FA 1 绝对值BF=2 p
抛物线的焦点弦与抛物线交于AB两点,过此两点作抛物线切线,切线交于c点,如何证明C点在抛物线的准线上.

证明:我们不防设抛物线的方程为x^2=2py,那么其准线方程为y=-p/2,焦点F(0,p/2),设A(x1,y1),B(x2,y2),过焦点可设AB(斜率存在)直线方程为y=kx+p/2,联立x^2

一道高中抛物线证明题求证:以抛物线的焦点弦为直径的圆必与抛物线准线相切.

用几何法证明较简单些.设AB为焦点弦,其中点为M,分别过A、B作准线的垂线,垂足分别是D、C.则由抛物线的定义易知:|AD|+|BC|=|AB|取CD的中点N,则|MN|=(|AD|+|BC|)/2=

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直

证明:如图因为抛物线y2=2px(p>0)的焦点为F(p2,0),所以经过点F的直线的方程可设为x=my+p2;代入抛物线方程得y2-2pmy-p2=0,若记A(x1,y1),B(x2,y2),则y1

已知抛物线的焦点在直线y=2x-4上.(1)求抛物线标准方程 (2)给出抛物线准线方程

既然是求抛物线的标准方程,说明抛物线的焦点在坐标轴上,在方程y=2x-4中,令X=0得Y=-4,这说明一个焦点坐标为(0,-4)此时抛物线的方程为x^2=-16y,准线方程为y=4;,在方程y=2x-

已知抛物线c的顶点在坐标原点,准线l的方程x=-2,点p在准线l上,纵坐标3t-t分支1,点q在y轴上,纵坐标为2t求

设抛物线的解析式为y=2px^2(P>0)又准线l的方程x=-2,所以-p/2=-2所以p=4所以y=8x^2由P(-2,3t-1/t),q(0,2t)两点,可求得直线为(1-t^2)x-2ty+4t

1、抛物线y^2=2px(p>0)的焦点F,过F点直线交抛物线于AB两点,点C在准线上,且BC||x轴,证明AC过原点O

第一题解题思路如下.设A,B两点的坐标(x1,y1),(x2,y2)在设过F的直线方程为x=my+p/2(p>0)---(1)抛物线方程y^2=2px--(2),联立(1)(2),消去x或者y写出关于

设抛物线焦点F.经过F 的直线交抛物线于A,B.点C在抛物线的准线上,且BC平行X轴.证明AC过原点

说下思路好了,不是什么简便算法,最常规的思路,设抛物线方程y方=2pxf的坐标为(p/2,0)设过F的直线的方程,然后与抛物线的方程联立,得到用p表示的A和B的坐标,然后由B得坐标推出C的坐标,最后联

线段AB是抛物线的焦点弦,若A,B在抛物线的准线上的射影分别为A1,B1,则角A1FB1等于多少度

你先画个图,图片上ABB1A1是个直角梯形(射影的定义,点到线上的垂线垂足就是这个点到线上的射影),∠A+∠B=360°-180°=180°.△A1AF是等边三角形,A1A=AF(抛物线定义,抛物线上

证明以抛物线的焦点弦为直径的圆与抛物线的准线相切

抛物线的标准式是y²=2px焦点横坐标为p/2准线横坐标为-p/2把焦点横坐标代入抛物线中y²=p²y=正负P那么直径长为2P半径为p焦点到准线距离为p/2-(-p/2)

若AB为抛物线y2=2px(p>0)的焦点弦,且A1B1分别为AB在准线上的摄影,则角A1FB1等于多少

准线是x=-p/2,根据抛物线定义,焦点弦的两端点到焦点距离和,也就是弦长,与这两点到准线距离和相等.该问题求解的实际上是两点y值之差的大小.焦点弦长为p+x1+x2,焦点弦与x轴夹角是θ,则有A1B

抛物线y=2x^2上一点A(1,2),求抛物线的焦点坐标,准线方程,抛物线在A处的切线方程

抛物线y=2x^2即x^2=1/2x2p=1/2p=1/4焦点坐标(1/8,0)准线方程x=-1/8y'=4x抛物线在A处的切线的斜率=4抛物线在A处的切线方程是y-2=4(x-1)即4x-y-2=0

已知抛物线的顶点在原点,焦点在x轴上,其准线过双曲线x

由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.设抛物线方程为y2=4c•x,∵抛物线过点(32,-6),∴6=4c•32.∴c=1,故抛物线方程为y2=4x.又双曲线x2a

已知抛物线C的顶点在原点,焦点在y轴上,且经过点(-1,4),则抛物线的准线方程为y=-116

因为抛物线C的顶点在原点,焦点在y轴上,且经过点(-1,4),设标准方程为x2=2py,因为点(-1,4)在抛物线上,所以(-1)2=8p,所以p=18,所以所求抛物线方程为:x2=14y.其准线方程

已知y^2=2px,直线l过抛物线焦点c交抛物线上AB两点,D在准线上,当三角形BAD为等边三角形时,求D点坐标.

额..写着写着给忘了设AB所在的直线的斜率为k则AB所在的直线的方程为y=k(x-p/2)设AB的横坐标分别为x1x2因为AB是直线和抛物线的交点所以联立直线方程和抛物线方程消去y得k²x&

抛物线y^2=2px的焦点弦AB中点为M,A,B,M在准线上的射影分别为C,D,N,求证:

(1)抛物线y^2=2px①的焦点为F(p/2,0),准线:x=-p/2,设AB:x=my+p/2,代入①,得y^-2mpx-p^=0,设A(x1,y1),B(x2,y2),则C(-p/2,y1),D

过抛物线y^2=2px 焦点F的弦AB,点A.B在准线上的投影为A1,B1求角A1FB1

∠A1FB1=90度.由抛物线的定义,知|AA1|=|AF|,|BB1|=|BF|,∴∠AA1F=∠AFA1,∠BB1F=∠BFB1.设x轴交准线于点K.∵A1A‖B1B‖x轴,∴∠AA1F=∠A1F