证明反常积分dx (x-a)q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:51:08
证明反常积分dx (x-a)q
求反常积分∫[0,+∞){x^3/[exp(x)-1]}dx

参考http://zhidao.baidu.com/question/547814496.html?oldq=1再问:大神!求问第一行第二步是如何推导的再答:等比数列求和取极限再问:不太理解。。再答:

计算反常积分f0到正无穷x/(1+x)^3 dx

我算算再问:好的,谢了再答:做出来了,给你传个图再问:好的,,呵呵再答:再问:线性微分方程y^(4)-y=0通解为再问:这个呢再答:y^4-y=0的通解?再问:对啊再问:帮帮忙再答:你题没写错吧?再问

求反常积分 ∫[1,5]dx/(√5-x)

再问:亲是根号五后面的x不在根号下的再答:重新解答如下,请参看:

求反常积分:∫(上限+∞,下限0)dx/[e^x+e^(-x)]

上限下限打时省略.原式=∫(e^x)/[(e^2x)+1]dx=∫d(e^x)/[(e^2x)+1]=arctan(e^x)[0-->+∞]=π/2-tan(π/4)

反常积分的问题dx/(e^(x+1)+e^(3-x))求其1到正无穷大的反常积分

上下同时除以e^(x+1):原是=∫[e^(-x-1)]/[e^(2-2x)+1]dx=e^(-2)∫[e^(1-x)]/[e^(2-2x)+1]dx=-e^(-2)∫1/[e^(2-2x)+1]de

证明反常积分e^(-px)dx在0到正无穷处收敛,

证明:∫(0,+∞)e^(-px)dx=-1/p*e^(-px)|(0,+∞)=lim-1/p*e^(-px)-lim[-1/p*e^(-px)]x->+∞x->0=0+1/p=1/p故∫(0,+∞)

请教一道积分的证明题假定所涉及的反常积分(广义积分)收敛,证明:∫f(x-(1/x))dx=∫f(x)dx(等式的两边积

如图.另一方面,从t=x-(1/x)的图像上看,x=0处无定义,图像分左右支.反解后相当于求反函数(关于直线t=x做对称),于是原来的右支变为恒大于零,左支恒小于零.所以书上的证明是对的.

试推导反常积分In=∫(0,+∞)x^n*e^(-x)dx的递推公式,并由此证明In=n!

分部积分+递推记I(n)=∫(0,∞)x^ne^(-x)dx=n∫(0,∞)x^(n-1)e^(-x)dx=nI(n-1)则I(n)/I(n-1)=n并且易得I(1)=1那么累乘有I(n)=n!*I(

高数问题:证明反常积分:∫b a dx/(x-a)^q 当0

考虑不定积分∫dx/(x-a)^q当q=1时,∫dx/(x-a)=ln|x-a|+C,∫badx/(x-a)^q=ln(b-a)-ln0根据对数性质显然发散当q≠1时,∫dx/(x-a)^q=∫(x-

对参数p,q,讨论反常积分∫[x^p/(1+x^q)]dx的敛散性(积分下限为0,上限正无穷)

分成0~1正无穷两部分讨论1时p>-1q任意正无穷时q-p>1综合q>1+p>0再问:敛散性再说详细点,谢了再答:在加一句根据比较判别法就可以了。再问:什么时候收敛,什么时候发散,详细点,分数马上双手

反常积分∫x e^(-x)dx

分部积分求不定积分,-∫xde^(-x)=-xe^(-x)-e^(-x)+C代值进去=0-(0-1)=1

反常积分∫0到无穷e^(-x^2)dx,用含参变量的反常积分做

见图再问:受教了原来还可以这样做不过我记得老师讲的时候是把x换为ax然后对a求导来做的再答:你说的是x^2*exp(-x^2)这样的积分,可以用求积分exp(-a*x^2)dx对a的导数来得到。这个题

证明反常积分:∫b a dx/(x-a)^q 当0

q=1时,原式=ln(x-a)[b~a]=ln(b-a)-lim[x→a+]ln(x-a)x→a+,x-a→0+,ln(x-a)→-∞∴ln(b-a)-lim[x→a+]ln(x-a)=+∞所以发散q

反常积分[0,+∞ ] e ^ (-x^1/2) dx

令x^1/2=t即x=t^2,dx=2tdt原式=2∫[0,+∞]e^-t·tdt分部积分:=2[-e^-t·t|[0,+∞]+∫[0,+∞]e^-tdt]=2[-e^-t·t-e^-t]|[0,+∞

求解反常积分:∫(-∞,0) e^(-x) dx

原式=-e^(-x)|[-∞,0]=1-∞=-∞

证明(f(x)dx的积分,-a

右边=积分(0a)(f(x))dx+积分(0a)(f(-x))dx令t=-xt属于(-a,0)积分(0a)(f(-x))dx=积分(0-a)(f(t))-dt=积分(-a0)(f(t))dt=积分(-