证明可逆的上(下)三角形矩阵的逆矩阵也是上(下)三角形矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:40:47
证明可逆的上(下)三角形矩阵的逆矩阵也是上(下)三角形矩阵
线性代数:证明可逆的矩阵?

A^-1+B^-1=A^-1(B+A)B^-1所以(A^-1+B^-1)*[B(A+B)^-1A]=E且A、B、A+B均可逆,所以A^-1+B^-1也可逆,逆矩阵为B(A+B)^-1A

请教一道证明矩阵可逆的证明题

不知道符不符合你的要求AB和BA特征值相同E-AB可逆,说明det(E-AB)不为0,1不是AB的特征值因此,1不是BA的特征值因此det(E-BA)不为0

n阶可逆矩阵的证明题 特别是第二问

当n=3时,det[AAt]=A^2det{[A]I}=A^3要两边相等,det[A]=0或1,由于A可逆,所以det[A]=1

线性代数 矩阵不可逆的证明

以下AT表示A的转置|E+A|=-|E+A|(-1)=-|E+A||AT|=-|(E+A)AT|=-|AT+AAT|=-|AT+E|=-|(A+E)T|=-|A+E|=-|E+A|所以|E+A|=0,

如果矩阵A可逆,证明A’(A的转置矩阵)也可逆.

A可逆,∴存在B使得AB=BA=I,(AB)'=B'A'=(BA)'=A'B'=I'=I,∴B'为A'的逆矩阵.

如何证明可逆矩阵的转置矩阵也可逆.要有详细步骤

因为A可逆所以|A|≠0而|A|=|A^T|所以|A^T|≠0所以A^T可逆.[A^(-1)]^TA^T=(AA^(-1))^T=E^T=E所以A的转置的逆矩阵等于A的逆矩阵的转置

A与可逆矩阵相乘不改变秩的证明

两种方法1.利用初等变换不改变矩阵的秩因为可逆矩阵可以表示为初等矩阵的乘积而A乘初等矩阵相当于对A作初等变换所以A的秩不变--这个方法包括了可逆矩阵左乘A,右乘A,或是左右同时乘A2.利用r(AB)

关于可逆矩阵的证明问题

这样证明:B^m=P^(-1)A^mP=BB…B(m个B相乘)=(p^(-1)AP)*(p^(-1)AP)…(p^(-1)AP)=p^(-1)AP*p^(-1)AP*p^(-1)AP*…p^(-1)A

求证明 两实对称可逆矩阵的乘积还是实对称可逆矩阵.

没这个结论.反例A=[12;25],B=[1-1;-12]都是实对称可逆矩阵但AB=-13-38不是对称矩阵.再问:那么n阶实对称可逆矩阵集是不关于乘法封闭的?再答:对再问:谢谢老师。

设一个对称矩阵有可逆矩阵,证明它的逆矩阵也是对称矩阵

证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)

一道有关线性代数可逆矩阵的证明题

因为[A|B]的阶梯矩阵是[I|X]所以存在初等矩阵P1,...,Ps使得P1P2...Ps(A,B)=(I,X)即有P1P2...PsA=I,P1P2...PsB=X又由P1P2...PsA=I知A

求矩阵的逆矩阵和证明矩阵可逆

(1)(A-E)(A+2E)/2=E,所以可逆,其逆就是(A-2E)/2(2)行互换,相当于A乘以初等矩阵,初等矩阵可逆,所以B可逆

如何用矩阵的初等变换证明矩阵可逆

初等变换保持矩阵的秩,只需用初等变换把矩阵变成一个满秩矩阵﹙例如对角元全部不是零的对角阵﹚即可.

线性代数矩阵的可逆证明题求助

1.证明:因为A^2-A-2E=0所以A(A-E)/2=E所以A可逆,且A^-1=(1/2)(A-E).又由A^2-A-2E=0得A(A+2E)-3A-2E=0A(A+2E)-3(A+2E)+4E=0

既是上三角形矩阵又是下三角形矩阵的n介矩阵的一般形式

是对角阵,也就是除对角线外所有元素都为0.

可逆矩阵的等价矩阵是否可逆

肯定可逆.首先告诉你一个结论就是等价矩阵的秩是相同的.A可逆则A的秩是N,则B的秩也是N即B的行列式不等于0,所以A可逆.等价矩阵的概念其实是一个矩阵A可以经过有限次的初等变化,转化为B,则称A与B等

如何证明一个矩阵是可逆的?(多种方法)

就一个n阶的矩阵1矩阵的秩小于n,那么这个矩阵不可逆,反之可逆2矩阵行列式的值为0,那么这个矩阵不可逆,反之可逆3,对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可

两个可逆矩阵的乘积是否为可逆矩阵?请证明

两个可逆矩阵的乘积是否为可逆矩阵?请证明还是可逆矩阵假设A,B可逆|AB|=|A||B|因为A,B是可逆的所以|A|≠0.|B|≠0从而|AB|=|A||B|≠0由定义,得AB可逆

如何证明两个n阶上三角形矩阵的乘积仍为上三角形矩阵

证明:设A=(aij),B=(bij)是上三角n阶方阵则当i>j时aij=bij=0.记C=AB=(cij)则当i>j时cij=ai1b1j+...+aii-1bi-1j+ai,ibi,j+...+a