证明同一齐次线性方程组的任意两个解的线性组合还是此线性方程组的解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:43:01
只需证明A^TAX=0的解是AX=0的解即可因为A^TAX=0的解是XTATAX=(AX)^T(AX)=0的解令AX=B,则BTB=0,所以B=AX=0证毕!
112-11120-10-32=01-10215-3000-2则得方程组x1+x2+x3=0x2-x3=0x4=x4取X4为0x3为1则K[-2,1,1,0]为一般解
AX=0的解都是BX=0的解,∴A,B的列数相等﹙例如都是n﹚,且R(A)=R(B)=rAX=0,BX=0的基础解系的容量都是n-r.AX=0的基础解系,都是BX=0的解,正好构成BX=0的基础解系,
A是实方阵吧.证明:记A'=A^T(1)设X1是AX=0的解,则AX1=0所以A'AX1=A'(AX1)=A'0=0所以X1是A'AX=0的解.故Ax=0的解是A'AX=0的解.(2)设X2是A'AX
这个吗,是线性代数的一个基本定理由Cramer法则,当行列式|A|!=0的时候,方程只有唯一解(0,0,0...0),当|A|=0的时候,一定有非零解,比如未知数n=5,r(A)=3,这个时候有非零解
可以取非零的任意实数.1是任取的一个自由未知量或者你不妨取其它的任何一个实数其实只要明确一点不管是1还是你想取的任意一实数,它都是零向量的系数(这一点应该清楚吧因为它的秩为r且题设已经设为最简单形式只
证明:必要性因为ABX=0与BX=0同解所以它们的基础解系所含向量的个数相同所以n-r(AB)=n-r(B)即有r(AB)=r(B).充分性.易知BX=0的解都是ABX=0的解而BX=0的基础解系含n
这个系数行列式必然行数和列数是想等的,如果这个行列式的值是0那么行列式在行的初等变换中必然可以出现一行全部都是0的状态,这样一来也就是说以前的方程组里面相互可以消掉某个方程,这个时候就出现了未知数数量
证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解
这不矛盾事实上,此时Ax=b有唯一解.A是方阵的前提下:|A|≠0(r(A)=n),方程组Ax=b有唯一解|A|=0(r(A)
两个线性方程组Ax=0与Bx=0同解,x是n维列向量解相同,所以可以有相同的极大无关组,也就是有相同的基础解系,基础解系所含的向量个数也是一样的但是Ax=0的基础解系所含向量个数是n-r(A)但是Bx
不一定,有基础解系首先要有解吧,但并不是所有的齐次线性方程组都有解.基础解系含解的个数等于n-r,其中n是未知量的个数,r是系数矩阵的秩.
两个齐次线性方程组的系数矩阵行等价再问:两个系数矩阵的行数不相等呢?行等价是对应成比例吗?再答:行等价是它们的行向量组可以互相线性表示再问:行向量组能求秩吗?行向量组怎么线性表示呀,没学过,额额……
同解的齐次线性方程组的基础解系未必相同,基础解系会有很多,但一定是等价的.不过不同的基础解系所含向量的个数是相同的.
矩阵相当于映射,矩阵奇异时,映射是多对1的;m*n矩阵A就是将n维空间的点映射到m维空间(保持原点映为原点),其映射核定义为应到m维空间的原点的所有点;其秩则是像所能占据的最大的空间维数.映射核的维数
证明:首先,显然Ax=0的解都是A^2x=0的解.又因为r(A)=r(A^2)所以两个齐次线性方程组的基础解系都含有n-r(A)个解向量故Ax=0的基础解系也是A^2x=0的基础解系所以两个齐次线性方
“方程组的秩是n-1”这种说法是第一次见到,意思是系数矩阵A的秩是n-1吧?A的秩是n-1,所以方程组Ax=0的基础解系里有n-(n-1)=1个向量.因为Akl≠0,所以(Ak1,Ak2,...,Ak
因为A是满秩的,所以A可逆,将ABx=0两边同乘以A的逆,则得到Bx=0,所以他们是同解的
写成矩阵的形式,方程Ax=b,其中b≠0是非齐次线性方程组它对应的齐次线性方程组就是Ax=0设Ax=0的基础解系为x1,x2,……,xm则Ax=0的通解就是k1x1+k2x2+……+kmxm,k1,k