证明在由群的一个子群所确定的配集中,只有一个配集是子群
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:55:46
设,是群的两个互不包含的子群,所以必有s属于但是s不属于;t属于但是t不属于.则s*t都不属于和,否则不妨设s*t属于,因为s属于,是群,s的逆s^(-1)也属于,t=[s^(-1)]*(s*t)也属
这道题考查隐函数求导方法,求出x=0的倒数就是切线的斜率啦,k1=y‘,然后法线的斜率就是-1/y’.x=0代入方程,得sin0+lny=0即lny=-1解得y=1/e也就是说x=0处曲线上的点是(0
6.有关太阳活动的叙述,不正确的是()B.太阳“强风”的出现是太阳活动最强烈的显示7.太阳风暴对人类活动的影响,不可信的是()D.地壳活动剧烈,火山、地震、泥石流频发
目前还没有办法直接表示出来众所周知的Cayley定理指出每个有限群和Sn的某个子群同构目前有限群的分类没有完成(进展很缓慢),没法把Sn的所有子群列举出来你想表示的话恐怕只有有描述法来规定集合了再问:
证明有定义知H包含于G1对于任意的a,b∈H,有f(a)=g(a),f(b)=g(b)∵f和g都是同态映射,所以必有f(b-¹)=f(b)-¹,g(b-¹)=g(b)-&
设(a,b)=a^-1b^-1ab是群G的换位子,换位子生成的群为G',下面证明G’是G的正规子群证明:因为(a,b)^-1=b^-1a^-1ba=(b^-1,a^-1)属于G'G’={(a1,b1)
该题你没能表达清楚,本题的意思应该是:证明任一个群G不能是两个不等于G的子群的并集.如果是这样我给你提供一个证明,用反证法,设H1,H2均是G的子群,如果H1UH2=G,显然H1,H2互相不包含,否则
首先这个证明没有任何问题,看了你的提问和一楼的回答估计你们都没有搞懂A={h(H∩K)|搞懂了你下面的提问就没有问题了.陪集的定义一楼没有搞清楚所以搞成“所谓的每个h(H∩K)都有不止一种表示方法(换
我先理解一下你这个题.为了偷懒,我认为H和K是G的仅有的两个不同的n阶子群,除它们以外没有别的n阶子群了(所谓“恰好”).如果不对请告知.这样对于K中的任何元素k,只要证明kHk^(-1)=H即可(因
应该是证明H∩K={1}吧?(1)显然1∈H,且1∈K,即{1}是H∩G的子集;(2)设|H∩K|=m因为H∩K同时为H和K的子群,根据拉格朗日定理,有m|3,且m|5,显然m=1,即|H∩K|=1;
(1)对KH中任意元素kh,由于h^{-1}k^{-1}是HK中元素,而HK是群,所以kh=(h^{-1}k^{-1})^{-1}\inHK,因此,KH是HK的子集;(2)对HK中任意元素x,由HK是
设实数域上的行列式为1的n阶方阵全体构成的集合为H,n阶可逆矩阵全体关于矩阵乘法所成群为,则对任意A,B∈H,|AB|=|A||B|=1,|A^-1|=|A|^-1=1,即AB∈H,A^-1∈H,所以
设这个半群H的所有元素集为{a(1),a(2),…,a(n)},a(1)*H=H,得a(1)*a(i)=a(1),a(i)=1,不妨设i=1,于是a(j)*H=H,得a(j)*a(k)=1,j=1、2
用{nZ}代表n的倍数所构成的群,运算都是加法.令H={2Z},K={3Z}则S={4Z}是H的一个真子群,令f:S→Kf(4k)=3k;则f是S到K的一个同构.同理令T={9k},T是K的一个真子群
⑴.看任意k∈K.k=g^-1hg,h∈H.H是子群,h^-1∈H.从而k^-1=(g^-1hg)^-1=g^-1(h^-1)g∈K.①又设:j=g^-1rg∈K,r∈H.kj=(g^-1hg)(g^
只需证明H满足群的三个定义:1、单位元:G中的单位元1是有限阶元素,所以1属于H,满足单位元定义.2、封闭性:设a、b是H中任意两个元素,且有a^m=b^n=1,n、m为正整数,则(ab)^(mn)=
证明p-群一定有一个p阶子群设G为p-群,|G|=p^n.任取G中的非单位元a,它的阶整除|G|=p^n,所以存在1再问:关键是怎么找出来?就说S4中阶为6的子群吧再答:存在30个子群,.其中,除去两
苯环各原子同一平面带上甲基就有七个碳还有,两环相连的那个公共碳的对位碳肯定同一平面.最后一个可能是连在对位碳上的甲基.
其中一个子群包含在另一个子群内的时候.A
必要性:若H是G的子群,自然非空,并对乘法和取逆封闭,从而H≠∅,并对任意a,b∈H,有ab⁻¹∈H.充分性:首先,由H≠∅,可取a∈H,由条件得e=aa