证明存在一个n阶实矩阵A使得A² 2A 5E=0的重要条件是n为偶数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:03:21
因A'A对称,可以对角化为Pdiag(a1,...,an)P',P是正交阵取a>|ai|,i=1,2,...,n则aIn+A'A=Pdiag(a+a1,...,a+an)P',特征值都是正数,从而正定
证:必要性.因为R(A)=1所以A有一个非零行,且其余行都是此行的倍数设此行为b^T则A=k1b^T...knb^T令a=(k1,...,1,...,kn)^T则A=ab^T充分性.因为存在非零列向量
唯一性:若有两种形式即A=B+CB对称C反对称A=F+GF对称G反对称所以有A'代表A转置A'=B'+C'=B-CA'=F'+G'=F-G由上有F+G=B+CF-G=B-C两式相加有2F=2B,F=B
这里是可同时上三角化,至于对角化则不一定.证明也很简单,利用可交换矩阵有共同特征向量,并将这个特征向量扩充为一组基.考虑A,B在这组基下的矩阵.然后利用数学归纳法即可.注:当然事实上这里要求A,B可交
假设A相似于对角矩阵Λ,则由相似的定义有A=P^(-1)ΛP,P可逆所以A^k=(P^(-1)ΛP)^k=P^(-1)Λ^k*P=O所以Λ^k=O即Λ=O从而A=P^(-1)ΛP=O与A是n阶非0矩阵
做奇异值分解A=UΣV^T,然后取P=UV^T,S=VΣV^T即可
提示:是正定对称矩阵.于是由习题2存在正定矩阵S,使得=.再看一下U应该怎样取.]
这个就是所谓的Schur分解先取A的一个单位特征向量x,取以x为第一列的酉阵Q,Q^HAQ变成分块上三角阵,归纳即可.
(1)A不可逆,故其秩小于n,故可经过有限次行初等变换P1,P2,.Pk变为第一行元素全为0的矩阵DD=(Pk).(P2)(P1)A=QA,设:Q=(Pk).(P2)(P1)取F为这样的矩阵:其第一行
如图再问:这个题还需要证唯一性,唯一性怎么证呢?再答:不好意思,唯一性想不出来。
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
这个命题不对!反例:A=0-101-20-10-1则A可逆但A的3重特征值只有一个线性无关的特征向量,A不能对角化!再问:这是考试一道原题--···而且题目我是原封不动打上来的··
正定矩阵都是对称阵,所以可以正交相似对角化.即存在正交阵O使得A=O'diag{a1,a2,...,an}O,再由A正定知对角元全为正数,即a1,a2,...,an>0.令b1=√a1,b2=√a2,
知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2
B正定,存在可逆阵D,使得D’BD=E,记M=D‘AD是对称阵,故存在正交阵Q,使得Q'MQ是对角阵,令C=DQ,则C'AC=Q'D'ADQ=Q'MQ是对角阵,C'BC=Q'D'BDQ=Q'EQ=E是
"因为最小多项式肯定整除x^m-1,那么最小多项式没有重根,那么可对角化"对的也可以直接讨论Jordan块,因为J^m是可以具体算出来的再答:我这里写的J代表一个Jordan块
根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆
A是实对称矩阵,则A的特征值都是实数.因为A的行列式等于所有特征值的乘积,且A的行列式<0,所以A至少有一个特征值λ<0.设X是A对应于特征值λ的特征向量,则AX=λX,两边左乘以X^T,则(X^T)
因矩阵A与B相似,则存在满秩矩阵Q,使A=Q^(-1)BQ→QA=BQ设QA=BQ=R→A=Q^(-1)R,B=RQ^(-1)把Q^(-1)看成Q即可