证明平行四边形的面积等于对角线乘积的一半

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:24:26
证明平行四边形的面积等于对角线乘积的一半
证明对角线互相垂直的四边形的面积等于对角线乘积的一半

证明:设该四边形为ABCD,AC与BD为互相垂直的对角线,且AC与BD的交点为O.因为AC*BD=(AO+CO)BD=AO*BD+CO*BD=2*[(AO*BD)/2+(CO*BD)/2]又因为三角形

平行四边形两条对角线把平行四边形分成四个面积相等的三角形,对还是错?如果对怎么证明?

对.因为两个三角形全等,面积也相等.再答:先证明全等。三条边相等,肯定全等再问:平行四边形中的四个三角形中怎么证明有公共边的的两个三角形面积相等或全等?再答:对角线相互平分。还是根据三个边相等证明全等

怎样证明过平行四边形的对角线的线分为了两个面积相等的图形

例如:平行四边形ABCD,MN过对角线AD因为四边形ABCD是平行四边形所以AB//CD,AB=CD由A向CD做垂直线AE因为平行四边形的距离处处相等所以三角形ABD的高也为AE即,三角形ACD面积=

运用余弦定理 证明:平行四边形两条对角线的平方等于他们各边的平方和

证明:设四边分别为a,b,a,d两邻角分别为α,β(α+β=180°)两对角线分别为d1,d2则:d1²=a²+b²-2abcosαd2²=a²+b&

平行四边形证明题若一直线经过平行四边形两对角线的交点,则这条线段2等分平行四边形的面积...要证明这个结论

平行四边形为中心对称图像,过对称轴心的线都会将其面积平分的具体证明也很简单,如果此直线和两条对角线重合则将平行四边形分为两个全等三角形,结论很明显.更一般的会将平行四边形分为两个梯形,很明显这两个梯形

平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.这个真命题怎么证明

首先,要知道这个问题:在△ABC中,AD是中线,AH是高.因为S△ABD=BD×AH/2,S△ADC=DC×AH/2,而BD=DC所以S△ABD=S△ADC那么在平行四边形ABCD中,对角线AC和BD

用于弦定理证明:平行四边形两条对角线的平方和等于它各边的平方和

该怎么说呢?你先画个平行四边形,宽为a,长为b,再连对角线为m(较长的条)、n,标角为a(较大角★),b(都为数学标语,下用●表示,它两是互补).证明:如图,设平行四边形宽为a,长为b,对角线分别为m

用余弦定理证明 平行四边形两条对角线平方的和等于四边平方和

假设平行四边形ABCD,则∠A=180°-∠B,AB=CD,AD=BC在△ABD中,BD²=AB²+AD²-2AB*AD*COSA在△ABC中,AC²=AB&#

证明平行四边形面积等于底*高

首先确定定理:长方形面积=长*宽第二确定:平面内可以进行等面积切割平移把./—————/././././..././../././—————/的右边按./———┰—/./.┃..././.┃../..

用向量证明:平行四边形两条对角线的平方和等于平行四边形的平方和?

设平行四边形ABCD中,向量AB=向量a,向量BC=向量b则向量CD=向量-a,向量DA=向量-b则向量AC=向量a+b,向量BD=向量b-a向量AC²+向量BD²=向量a

证明:平行四边形四条边的平方和等于两条对角线的平方和的两倍

高中证法:用向量来证最简单,只需3步,而且不用作任何辅助线.(以下的量均表示向量,那个箭头打不出来)证明:平行四边形ABCD中AC=DC-DABD=DA+DC所以 AC^2+BD^2=(DC

证明对角线相等的平行四边形是矩形

平行四边形ABCD中,AC=BD由平行四边形的特点:对边相等:BC=AD,AB=AB所以:△ABC≌△BAD可知:∠ABC=∠BAD,而∠ABC+∠BAD=180°所以:∠ABC=∠BAD=90°即平

用向量证明:平行四边形两条对角线的平方和等于四边形的平方和.

设平行四边形ABCD中,向量AB=向量a,向量BC=向量b则向量CD=向量-a,向量DA=向量-b则向量AC=向量a+b,向量BD=向量b-a向量AC²+向量BD²=向量a&sup

证明:平行四边形四条边的平方和等于两条对角线之和

证明:如图过A,D两点做BC边的高,垂足分别为E、F则易知△ABE≌△DCF   BE=CF,AE=DF利用勾股定理得BD²=BF²+DF²

证明:对角线相等的平行四边形是矩形

设四边形ABCD是平行四边形,对角线AC=BD在三角形ABC和DCB中AB=DC(平行四边形对边相等)BC=CB(公共边)AC=DB(已知)所以三角形ABC和DCB全等角ABC=DCB又AB平行于DC

用余弦定理证明平行四边形对角线的平方和等于四条边的平方和

AC^2=a^2+b^2-2abcosBBD^2=a^2+b^2-2abcos(180°-B)=a^2+b^2+2abcosB两式相加,AC^2+BD^2=a^2+b^2+a^2+b^2,得证.再问:

用余弦定理证明 平行四边形两条对角线平方和等于四边平方的和

AC^2=a^2+b^2-2abcosBBD^2=a^2+b^2-2abcos(180°-B)=a^2+b^2+2abcosB两式相加,AC^2+BD^2=a^2+b^2+a^2+b^2,得证.

急!平行四边形对角线的平方和等于四边的平方和的证明

法一:过A,D两点做BC边的高,垂足分别为E、F则△ADE≌△DCFBE=CF,AE=DF利用勾股定理得到BD平方=BF平方+DF平方BD平方=(BC+CF)平方+DF平方=BC平方+2*BC*CF+

证明梯形的面积等于对角线乘积的一半

过点B作BK平行AD,交DC延长线于K,三角形ABC全等三角形KCB,直角三角形BDK面积=AC*BD/2所以梯形的面积=三角形BDK面积=AC*BD/2

四边形面积等于对角线乘积的一半怎么证明

你这个对角线是不是垂直的啊?再问:对角线不垂直再答:不垂直就不是了,比如一个长方形变长为3和4那么对角线长就为55*5=2525/2=12.5,而长方形的面积为12,明显不等了