证明方程x=2sinx 1至少有一个小于3的正根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:50:31
证明方程x=2sinx 1至少有一个小于3的正根
证明方程x^4 - 4x+2=0在区间(1,2)内至少有一个根.

记f(x)=x^4-4x+2.显然f(x)连续.f(1)=-10.由连续函数的介值定理,f(x)==0在区间(1,2)内至少有一个根如果你不知道什么是连续,我就没办法了.

证明方程x^4-3x^2=1至少有一个根介于1和2之间

x^4-3x^2-1带入1为负数带入2为正数这个函数x^4-3x^2-1是连续的所以一定至少有一根在1,2之间.这是一个法则

微积分,证明方程2的x次方=4x在(0,1/2)内至少有一个实根,

亲爱的xuanyuan102730,证明:构造f(x)=2^x-4x,显然f(x)是连续函数,(直观的讲,就是这条线不间断)而f(1/2)=√2-20,这个0就是x轴,那么一根线,一头在x轴的上方,一

证明方程X^4-4x+2=0在区间(1,2)内至少有一根

令f(x)=X^4-4x+2f(1)=-1f(2)=10故证明方程X^4-4x+2=0在区间(1,2)内至少有一根

证明方程x^4-4x-2=0在区间内至少有2个实数根

-1,函数值》0,0,函数值0,利用两个中值定理,肯定存在x1,x2分别在-10和02之间存在令函数值=0得证

证明方程sinx+2-x=0 至少有一个不超过3的根.

令f(x)=sinx+2-x有f(3)=sin3+2-3=sin3-10所以在0和3之间,f(x)有0点.即原方程有不超过3的正根证毕

证明方程.证明方程x^3+2x=6 至少有一个根介于1和3之间

令f(x)=x^3+2x-6则原方程等价于f(x)在(1,3)与x轴相交易得f(x)在R上递增(由求导,Δ

证明:方程x.x.x.x.x-3x=1 至少有一个根介于1和2之间

利用高等数学里的介值定理,设f(x)=x^5-3x-1,因为f(1)0,故在1与2之间至少存在一点,使f=0,也就是x^5-3x=1至少有一个根介于1和2之间

证明方程x*3^x=2至少有一个根小于1.

反证法.依题得一定有根.假设方程x*3^x=2一定有一根大于等于1.所以3^x大于等于3.2/x在(0,2]所以2/x不可能等于3^x与已知矛盾假设不成立所以方程x*3^x=2至少有一个根小于1.

证明方程x^3-2x-1=0至少有一个实根介于1和2之间

设f(x)=x^3-2x-1,因为f(1)=1^3-2-1=-20f'(x)=3x²-2,在1

证明方程x^3-x-2=0在区间(0,2)至少有一个根

方法一:设函数:f(x)=x^3-x-2,则f(0)=-20,即f(0)*f(2)√(1/3)时,f'(x)>0,即函数单调递增,且f(2)>0;当x=√(1/3)时,f(x)

证明方程x^5-3x=1至少有一根介于1和2之间

证明:令f(x)=x^5-3x-1f(x)在区间[1,2]上连续f(1)=-30由中间值定理的推论,(1,2)内必存在一点ξ使得f(ξ)=0这个ξ即是原方程的根

证明:方程X-2^X=1 至少有一个小于1的正根

证明:方程X-2^X=1至少有一个小于1的正根证明:∵方程X-2^X=1设f(x)=x-2^x-1令f’(x)=1-2^xln2=0==>2^x=1/ln2==>x=ln(1/ln2)/ln2=-ln

证明方程x^3-3x=1在(1,2)内至少有一个实根

证明:设f(x)=x^3-3x-1,则f'(x)=3x^2-3∵x>1,∴x^2>1,∴3x^2-3>0即f'(x)>0,∴函数f(x)在(1,2)上单调递增而f(1)=-10∴f(x)至少与x轴有一

证明方程x.2的x次方=1至少有一个小于1的正根.

令F(x)=x*2^x-1,显然是连续函数.F(0)=-10,所以由介值定理可得:在(0,1)内存在一点X0,使得F(X0)=0.即原方程至少有一个小于1的正根

证明方程x^4-4x-2=0在区间[-1,2]内至少有两个实数根

设:f(x)=x^4-4x-2f(-1)=1+4-2=3>0f(0)=0-0-20所以,x^4-4x-2=0在区间[-1,2]内至少两次通过x轴即:方程x^4-4x-2=0在区间[-1,2]内至少有两

证明方程x 2^x=1至少有一个小于1的正实根

设f(x)=x*2^x-1,则f(0)=-10.所以,根据零点定理,在区间(0,1)上,至少存在一个x0,使得f(x0)=0,即x0*2^x0=1.所以方程x2^x=1至少有一个小于1的正实根.