证明服从大数定理依概率收敛到0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:03:49
依概率收敛到N(λ,λ/n)(根据中心极限定理)再问:这是辛钦大数的题再答:依概率收敛到λ,因为Xi的期望是λ
用定义,考虑退化分布,很容易证.
根据Kolmogorov的ThreeSeriesTheorem(http://en.wikipedia.org/wiki/Kolmogorov%27s_three-series_theorem),Tn
这里得假设两个正态总体是独立.显然X1Y1,X2Y2,...,XnYn是独立同分布的.(服从什么分布我们不管,大数定律中也没有要求)而E(XiYi)=E(Xi)E(Yi)=0,于是由大数定律可得(1/
n趋于无穷大时,可以把第二个e^n看作是0测度点,于是Zn就是0,依概率收敛到0.
http://hi.baidu.com/%CA%FD%D1%A7%C1%AA%C3%CB%D0%A1%BA%A3/album/item/9b780a094b15eb4094ca6b6f.html#以前
证明:∫(0,+∞)e^(-px)dx=-1/p*e^(-px)|(0,+∞)=lim-1/p*e^(-px)-lim[-1/p*e^(-px)]x->+∞x->0=0+1/p=1/p故∫(0,+∞)
这题就是利用中心极限定理100(x-u)/(10*4)符合正态分布带入上个不等式即可得到结果了再问:能给个过程吗?我实在是不清楚再答:写起来比较麻烦你把-1
数学分析上有证明.两者等价,都是实数系基本定理.不用柯西原理和其他定理,直接证法如下.定理非空有上界的数集必有上确界;非空有下界的数集必有下确界.证明:任意实数x可以表示为x=[x]+(x),整数部分
大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性.就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小.由实际推断原理,在实际应用中,当试验次
这个证明过程本身就不需要具体计算n个随机变量的算术平均.因为随机变量是服从一个分布的.简单的说,大数定律要给我们说明的是:当n很大时,也就是抽样次数很多时,样本出现的频率很接近概率
令secx=tcosx=1/tx=arccos1/tdx={-1/√[1-(1/t)^2]}(-1/t^2)dt=1/[t√(t^2-1)]dtx=0时t=1x=π/2时t=+
先把几种分布搞清楚
随机变量本质上是一个实值函数,所以它的收敛应该和函数列的收敛去比较.
由abel判别法可知当p>0时其收敛(x^p单调减小趋于零,sinx的广义积分有界)p>1时绝对收敛0
第一步计算出X(n)的分布函数,从而分布密度.(有现成公式)第二步计算P(|X(N)-a|>e)=P(a-ea再问:X(n)的分布函数该怎么求再答:如果U(0,a)的分布函数是F(x),则Xn的分布函
数学分析上有证明.两者等价,都是实数系基本定理.不用柯西原理和其他定理,直接证法如下.定理非空有上界的数集必有上确界;非空有下界的数集必有下确界.证明:任意实数x可以表示为x=[x]+(x),整数部分
你的问题好像跟中心极限定理和什么的没关系吧问题一:99.9%以上投掷出6,按照概率1/6应该至少投掷多少次?答:假设至少投x次可以99.9%以上投掷出6,则有(5/6)^x=1-0.999,解得x=l
依概率收敛是对于随机变量来说的.一个随机变量序列(Xn)n>=1依概率收敛到某一个随机变量X,指的是Xn和X之间存在一定差距的可能性将会随着n的增大而趋向于零.而函数收敛是对于函数来说的.是对于任意的
选用切比雪夫大数定理,把定理内容写上,根据对立事件的概率关系就可以得到上面结论了.再答:欢迎追问,若略有帮助,请点一下采纳,谢谢!再答:已通知提问者对您的回答进行评价,请稍等再问:能不能给我个详细过程