证明欧式空间的基本列必然收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:36:51
两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.
反证法:如果不存在两个不同极限的收敛子列,又数列有界,即所有子列的极限相同,(不能为无穷大了)根据数列极限与子列极限的关系,得原数列必收敛!矛盾!从而必存在两个不同极限的收敛子列.
正交变换满足σ^Tσ是恒等映射.因此对任意的两个非零向量a,b,有==,即正交变换保持内积不变,因此||a||^2==.长度不变.于是a与b的夹角cos(theta)=/【||a||*||b||】在正
注意σ(ζ)=0等价于0==,即ζ=0用上述性质直接验证σ是线性变换即可:σ(ζ+η)-σ(ζ)-σ(η)=0σ(kζ)-kσ(ζ)=0
记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方.注意到要证不等
聚点定理:任意有界无穷数集至少有一个聚点.对此数列,若有无穷多个相同的项,则此以这些相同的项构成的数列的为该数列的收敛子列.若没有无穷多个相同的项,则该数列的每一个元素作为集合S的一个元素.由聚点定理
证明:任取一收敛子列(一定存在)设其极限为a,则在a的一充分小领域外,一定有这一有界数列的无限项(仍然有界),从而有收敛子列其极限一定不等于a再问:在充分小的邻域外应该只有有限项了啊,因为从n>N开始
1/(n^2+1)1/n^2p级数p>1所以收敛
a1,a2,...an.是n唯欧式空间R的一组基,等价于a1,a2,...an线性无关,等价于以(a1,a2,...an)为系数矩阵的齐次方程组只有零解假设存在b1-b2不等于0,使得(b1,ai)=
将a1,a2...am扩充为V的标准正交基a1,a2...am,...,an任一向量a可表示为a=k1a1+k2a2+...+kmam+...+knan(a,ai)=ki||a||^2=(a,a)=(
用反证法吧.假设a1…an+2(下标,后同)两两互为钝角n维空间任意n+1个向量线性相关,即存在不全为0的数k1….kn+1使得k1a1+…+kn+1an+1=0两边跟an+2内积,k1<a1,an+
这个数列的无限子数列也收敛,而且收敛到母数列的极限值,证明很简单.比如数列a1,a2,a3...an...收敛到A,它的子数列无非就是在这个数列中抽值,比如子数列是a2,a6,a11...am...,
欧式空间V有有限的标准正交基,个数为dimV ,设dimV=n,任何n维欧氏空间都与R^n同构正交阵行向量或列向量是单位向量.即元素的平方和为1,n*(1/4)^2=1 所以n=1
1证明r(AA^T)=r(ATA)=r(A)因为Ax=0,可以推出ATAx=AT(Ax)=0而且ATAx=0,x^TATAx=x^T(ATAx)=0,即(Ax)^TAx=x^TATAx=0所以必然有A
符号说明:∫(x→x+1)f(t)dt表示函数f(t)的定积分,其中积分下限是x,上限是x+1;∑(k:1→n)表示从第1项到第n项求和;下证函数列fn(x)=∑(k:1→n)[1/n*f(x+k/n
设V是一个非空集合,P是一个数域,在集合V的元素之间定义一种代数运算,叫做加法;这就是说,给出了一个法则,对于V中任意两个元素@和#,在V中都有唯一的一个元素$与他们对应,称为@与#的和,记为$=@+
若为两个正项级数:设两个收敛级数S1,S2.因为收敛必存在N,使得n>N时,S1n
是Σ(x/(1+n^2x^2)一致收敛,还是fn(x)=x/(1+n^2x^2)一致收敛?如果是后者,|fn|<1/n,对x∈R成立.再答:继续一下,对于前者f(x)=Σ(x/(1+n^2x^2))在
设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1
证明=>{an}收敛于a=>对任意ε>0,存在N>0,对任意n>N时,有|an-a|N时有2n-1>n,所以对任意ε>0,存在N,对任意n>N,|a(2n-1)-a|N时有2n>n,所以对任意ε>0,