证明若X服从卡方分布,则EX=n,DX=2n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:21:56
提示:假设Z=min(X,Y)Pr[Z
X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F
令x,N(0,1)x=1/根号(2π)*exp(-x^2/2)y=1/根号(2π)*exp(-y^2/2)x平方=1/(2π)*exp(-x^2)y平方=1/(2π)*exp(-y^2)由于x+y=1
明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所以平方后,分子是
说明x的期望是5,也就是指数分布的参数是5
3X/2Y=(X/2)/(Y/3),所以服从自由度(2,3)的F分布.
如果服从分布的话,DX=P(1-P)为0.21,可知P=0,3EX=P,所以答案为0.3就是带入公式,没什么难的,
因为X~t(k),由定义可令X=A/根号下B/k,其中A~N(0,1),X^2(k)分布Y=X^2=A^2/(B/k),因为A~N(0,1),所以A^2~X^2(k)Y=(A^2/1)/(B/K),则
用SPSS计算得P=0.13.
依题意,X1、X2均服从标准正态分布(X1+X2)/√2服从N(0,1)相当于只有1个标准正态分布的平方,所以自由度为1的卡方分布
Y=8-X服从分配B(0,0.25).
是这样子的,X服从于自由度为3的卡方分布,则有X=x1^2+x2^2+x3^2从X里抽出三个样本,则X1,X2,X3都有上面X=·····的表达式.根据卡分分布的可加性,3*3=9.则有,X1+X2+
lambda
E(x)=1/2D(x)=1/4E(X^2)=D(x)+E^2(x)=1/2如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!
有些符号不会打.但有这样的结论:泊松分布的数学期望与方差相等,都等于参数λ.因为泊松分布只含有一个参数,只要知道它的数学期望或者方差就能完全确定它的分布
Y=8—X服从分布B(0,0.25).再问:这是为了什么呢。能说下原因道理吗?~谢谢~~!再答:X服从B(μ,σ²),其中的μ就是期望Eξ,σ²就是方差Dξ,它们分别有性质:E(a
泊松分布P(X=k)=e^(-λ)*λ^k/k!期望和方差均为λEX=λ=5所以P(X=k)=e^(-5)*5^k/k
随机变量X服从参数为λ的泊松分布P{X=k}=e^(-λ)*λ^k/k!P{X=1}=e^(-λ)*λ^1/1!P{X=2}=e^(-λ)*λ^2/2!若P{X=1}=P{X=2}λ=2E(x)=D(
这个题目不难,倒是不好输入啊:(n-1)S²/σ²=(n-1)*1/(n-1)*Σ(Xi-X‘)²/σ²=Σ(Xi-X’/σ)²上面Σ后面就是标准化X