试说明对任意正整数n,2的n 4次方,2的n次方的相反数是30的倍数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:47:37
试说明对任意正整数n,2的n 4次方,2的n次方的相反数是30的倍数
证明对任意的正整数n,不等式nlnn>(n-1)ln(n-1)都成立

题目中的n>1,n=1就无意义了考查函数y=f(x)=xlnx(x∈[1,+∞))的单调性y'=1+lnx>0于是y=xlnx(x∈[1,+∞))是增函数下略

对任意正整数n,试说明3^n+1 -2^n+2 +3^n -2^n 一定能被10整除

提取公因式嘛!最后的结果是(3^n-2^n-1)*10这样那就是一定的啦!不懂再问!

若n是任意正整数,试说明3^n+2-4*3^n+1+10*3能被7整除

3^n+2-4*3^n+1+10*3^n=9*3^n-12*3^n+1+10*3^n=-3*3^n+10*3^n=7*3^n能被7整除

对任意的质数p,求证:存在无穷多个正整数n使得p能整除(2^n-n)

费马小定理在数论中是用欧拉定理证明的,但欧拉定理本身就比较麻烦,不过费马小定理另有个简洁的证明方法.对于素数p和一个任意n(n不能被p整除),令:n=c1modp2n=c2modp3n=c3modp.

是否存在大于1的正整数m,使得f(n)=(2n+7)·3^n+9对任意正整数n都能被m整除?

一定会恍然大悟的(2k+9)·3^(k+1)+9=(2k+7)*3^(k+1)+2*3^(k+1)+9……这个是分配律,应该没有问题=3*(2k+7)*3^k+2*3^(k+1)+9……3^(k+1)

若n是任意正整数,试说明3的n+2次方-4×3的n+1次方+10×3的n次方能被7整除

原式=3^n(3^2-4*3+10)=3^n*7因为3^n*7可以被7整除所以[3^(n+2)-4*3^(n+1)+10*3^n]可以被7整除

试说明:对任意自然数n,代数式n(n+5)-(n-3)(n-2)的值都能被6整除

n(n+5)-(n-3)(n-2)=n^2+5n-(n^2-2n-3n+6)=n^2+5n-n^2+2n+3n-6=10n-6∴能被6整除再问:你结果错了吧?还有为什么那样就能被6整除?再答:你可以试

证明对任意n,任意2n-1元正整数集合,一定存在n个元素,使得他们的和是n的倍数

COPY如下:不难验证,若命题对两个正整数m、n分别成立,则对mn也成立.于是只要验证命题对任意素数p成立.用反证法,假设存在2p-1个数{a[1],...,a[2p-1]},使得其中任意p个的和不是

设n是大于1的正整数,求证:n4+4是合数.

证明:我们只需把n4+4写成两个大于1的整数的乘积即可,n4+4=n4+4n2+4-4n2,=(n2+2)2-4n2,=(n2-2n+2)(n2+2n+2),因为n2+2n+2>n2-2n+2=(n-

利用因式分解试说明对任意正整数n,2的n+4次方减2的n次方一定能被30整除

2^﹙n+4﹚-2^n=2^4×2^n-2^n=16×2^n-2^n=15×2^n=30×2^﹙n-1﹚∵n是正整数∴30×2^﹙n-1﹚一定能被30整除.

十万火急!试说明:对于任意正整数n,2的n+4次方与2的n次方的差能被30整除.

2^(n+4)=2^n*2^4=16*2^n所以2^(n+4)-2^n=15*2^n=30*2^(n-1)所以必能被30整除

证明对任意正整数n,不等式ln(1/n+1)>1/n^2-1/n^3

f(x)=x^2+aln(1+x),取不妨取a=-1,构造函数g(x)=x^3-x^2+ln(1+x)则g'(x)=[x^3+(x-1)^2]/(1+x),当x>0时g'(x)>0恒成立,于是g(x)

说明:对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除.

n(n+7)-(n+3)(n-2)=n2+7n-(n2+n-6)=6n+6=6(n+1),∴当n为正整数时,6(n+1)总能被6整除.

已知n是正整数,且n4-16n2+100是质数,求n的值.

∵n4-16n2+100=n4+20n2+100-36n2=(n2+6n+10)(n2-6n+10),∵n2+6n+10≠1,而n4-16n2+100为质数,∴n2-6n+10=1,即|(n-3)2=

证明:对任意的正整数n,有1/1×3+1/2×4+1/3×5+.+1/n(n+2)

原式=1/2[1-1/3+1/2-1/4+1/3-1/5+.+1/n-1/(n+2)]=1/2[1+1/2-1/n-1/(n+2)]=3/4-1/n-1/(n+2)

证明对任意的正整数n,不等式ln(1/n+1)>1/n^2-1/n^3都成立

这题是2007的高考题(山东还是广东的忘了,应该是山东的),题目在题干中已给出一个函数:f(x)=x^2+aln(1+x),取不妨取a=-1,构造函数g(x)=x^3-x^2+ln(1+x)则g'(x

证明:对任意正整数n,不等式ln((n+2)/2)

用数学归纳法证明:当n=1时,ln((1+2)/2)=ln(3/2)=1)不等式成立,即ln((k+2)/2)={[(k+2)/(k+1)]^(k+1)}^[1/(k+1)]=(k+2)/(k+1)=

对任意的质数p,求证:存在无穷多个正整数n使得p能整除(2^n-n)

由费马小定理可以得到p|2^(p-1)-1所以p|2^(p-1)-1-p=2^(p-1)-(p+1)所以设n=k(p^2-1)那么2^n=[2^(p^2-1)]^k=[2^(p-1)]^(k(p+1)

对于任意的正整数n,试说明整数(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的倍数

(3n+1)(3n-1)-(3-n)(3+n)=9n^2-1-(9-n^2)=9n^2-1-9+n^2=10n^2-10=10(n^2-1)是10的倍数.n=1时,(3n+1)(3n-1)-(3-n)