128-5[2x 3]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:57:58
原方程组即(2-λ)x1-x2-2x3=05x1-(3+λ)x2-3x3=0-x1+(2+λ)x3=0因为方程组有非零解,所以系数行列式等于0|A|=2-λ-1-25-3-λ-3-102+λ=(λ+1
增广矩阵=1111512-14-22-3-1-5-2312110用初等行变换化为1000101002001030001-1方程组有唯一解:(1,2,3,-1)^T.
k,f为何值是方程组无解,解唯一,有无穷多解?在有解是,求出全部解.k≠-2时,方程组有唯一解.当k=-2时,r4+3r3100400
增广矩阵=111312252237r2-r1,r3-2r1111301120011r1-r2,r2-r3100101010011所以方程组的解为(1,1,1).
(1+x+x^2+x^3)^2-x^3设y=1+x+x^2,则(x^3-1)=(x-1)*(1+x+x^2)=(x-1)*y,原式=(y+x^3)^2-x^3=y^2-2*y*x^3+x^6-x^3=
该方程组的系数矩阵为11111111111123-1-2→01-3-4→01-3-4562101-3-40000所以,原方程组与方程组X1+X2+X3+X4=0,x2-3x3-4x4=0同解,令x3=
X1+2X2+3X3=4.(1)3X1+5X2+7X3=9.(2)2X1+3X2+4X3=5.(3),(1)+(2)-(3)*2,得:X2+2X3=3即:X2=3-2X3,代入(1):得:X1=X3-
原式=x3-2x2+x-4-2x3+5x+4=-x3-2x2+6x.
基础解系:η1=﹛x1=-1,x2=0,x3=1,x4=1﹜η2=﹛x1=-3,x2=1,x3=1,x4=0﹜通解为:k1η1+k2η2
解:A=112-1-10-32215-3r2+r1,r3-2r1112-101-110-11-1r1-r2,r3+r2103-201-110000方程组的一般解为:c1(-3,1,1,0)^T+c2(
看这里:http://zhidao.baidu.com/question/363570655.html
112-1-10-32215-3r2+r1,r3-2r1112-101-110-11-1r1-r2,r3+r2103-201-110000方程组的一般解为:c1(-3,1,1,0)^T+c2(2,-1
(1)(x3-2x2y+3y2)-(-2x3-3x2y+5y2)=x3-2x2y+3y2+2x3+3x2y-5y2=3x3+x2y-2y2,答:这个多项式为3x3+x2y-2y2.(2)当x=-12,
因为x3+3x+5=7,x3+3x=23x3+9x-2=3(x3+3x)-2=3*2-2=4
1.=2y1-5y'2>=3y1+y'2>=-5y1无限制,y2>=02.
-2×3²-(-2×3)²=-2×9-(-6)²=-18-36=-54【俊狼猎英】团队为你解答
24x3/5+3/5=(24+1)x3/5=25x3/5=152/3x4/7x3/10=(2/3x3/10)x4/7=1/5x4/7=4/35
增广矩阵=1-21111-21-1-11-21-55r2-r1,r3-r11-2111000-2-2000-64r3-2r21-2111000-2-2000010方程组无解.