请用高斯定理求面密度为a的无限大均匀带电平面的场强
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:46:54
高斯定理,先考虑某一根导线产生的电场以某一根导线为圆心作高为h,半径为2a的圆柱面对称性可以知道电场只能垂直于侧面因此高斯定理:E*2*pi*2a*h=h*λE=λ/(4*pi*a)那么单位长度的令一
1.可以看成无限个圆环电场的叠加.每一个圆环电场dE=Q(r)sin(α)/4πεa为圆环上任意一点和中心的连线和底面的夹角.Q(r)=2πaRcos(α)E=∫2πaRcos(α)sin(α)/4π
用静电平衡简单.用高斯定理也简单.在球心处做一个高斯球面,因为电场球对称,而且面内EdS积分是零,所以各处场强是零.当高斯球面的半径无限小时,场强仍是零,由于场强是连续的,所以,球心处场强为零.再问:
用归一化条件可以求,A=根号2/L
书上错了,右面分母漏了一个真空介电常数ε0,应为σ/ε0
在球面外部,此球面的电场线分布与带电量为Q=4πR²σ的点电荷电场线分布相同,所以可以用点电荷代替此球面,所以球面外距球心的距离为r处的电场强度为E=kQ/r²=4kπR²
数学上可以证明,电荷均匀分布的带电球体对外部的电作用,等效于位于球心处同样电量的点电荷的作用.——高2物理书那么对这道题,可以根据球体表面积公式算出这个球体的电荷,然后根据点电荷电场强度公式得到答案(
这个没有办法用高斯定理做,假设用高斯,首先要做个闭合的面,这个面只能是个球面(别的面就更复杂了),而这个球面上的场强肯定是大小不均的,你又不能用电量除以面积积分得场强.要求解的话,要积分,把半球面细分
把半球面看作许多圆环,积分即可没有必要在这问这些问题,把教材静电场例题及课后题做会就行了前提是会点微积分知识
使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ
面密度不趋于无穷大的话,线密度就趋于0.所以这个问题是不会出现的.
带点导体球壳的电势和内径无关,它的表面的电势是U=kq/R2,所以球外距离球心r处的场强就是Er=kq/r^2=UR2/r^2
线密度*长度=面密度*横截面积
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
那个希腊字母我用$;来代替面有两边,每边电荷为a*S/2,高斯定理E*S=(a*S/2)/$所以E=a/2$
这个好像是我们学校练习册上的题目吧,都会有答案的,找下学长,或者去下打印店那边吧,有答案的额
设该立方体的边长为a,考虑以点电荷为中心,边长为2a的立方体,根据高斯定律,大立方体的每一个面的电通量是q/6ε,然后由于原来的立方体之中有三个面分别是大立方体三个面的1/4,由对称性可以知道这三个面
2πrhE=λh/ε.因此高斯面上任意一点的电场强度的大小为E=λ/(2πε.r)
遇到老本行了,这道题是前苏联中学物理竞赛题的变型.我两年多没动过物理了,讲的不对请见谅.假设,A右边,C下边的点为B.设电流I从A点流入,向四面八方到无穷.则由A到B的电流有1/4I,再假设电流I从无
给点分啊,大哥,怎么都是0悬赏分啊.我简单说下,就是按字面意思来列的表达式,质量乘以半径的平方,首先取样,0-2π积分指的是分割成一个个扇面,扇面上取试样与数值轴夹角为φ,试样近似一个正方形,表达出边