请用高斯定理求面密度为a的无限大均匀带电平面的场强

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:46:54
请用高斯定理求面密度为a的无限大均匀带电平面的场强
两根无限长均匀带电直线相互平行,相距2a,线电荷密度大小分别为+λ、-λ,求每单位长度的带电直线受力大小

高斯定理,先考虑某一根导线产生的电场以某一根导线为圆心作高为h,半径为2a的圆柱面对称性可以知道电场只能垂直于侧面因此高斯定理:E*2*pi*2a*h=h*λE=λ/(4*pi*a)那么单位长度的令一

关于电场(1)一半径为R的半球壳(看清楚,是半球壳),其电荷面密度为a,求球心处电场大小.(2)一电荷面密度为a的无限大

1.可以看成无限个圆环电场的叠加.每一个圆环电场dE=Q(r)sin(α)/4πεa为圆环上任意一点和中心的连线和底面的夹角.Q(r)=2πaRcos(α)E=∫2πaRcos(α)sin(α)/4π

高斯定理的应用问题,一个半径为R的半球壳,均匀带电荷,电荷面密度为A,求球心处电场强度的大小.用一般方法做很麻烦,但是有

用静电平衡简单.用高斯定理也简单.在球心处做一个高斯球面,因为电场球对称,而且面内EdS积分是零,所以各处场强是零.当高斯球面的半径无限小时,场强仍是零,由于场强是连续的,所以,球心处场强为零.再问:

高斯定理的应用中的电荷面密度怎么就等于电场强度了呢?

书上错了,右面分母漏了一个真空介电常数ε0,应为σ/ε0

高斯定理解题:假设半径为R的球面上电荷均匀分布,电荷面密度为σ,试求:1.球面内外的电场分布.

在球面外部,此球面的电场线分布与带电量为Q=4πR²σ的点电荷电场线分布相同,所以可以用点电荷代替此球面,所以球面外距球心的距离为r处的电场强度为E=kQ/r²=4kπR²

一个半径为R的球面均匀带电,电荷面密度为a,求球面内,外任意一点的电场强度?

数学上可以证明,电荷均匀分布的带电球体对外部的电作用,等效于位于球心处同样电量的点电荷的作用.——高2物理书那么对这道题,可以根据球体表面积公式算出这个球体的电荷,然后根据点电荷电场强度公式得到答案(

半径为r的均匀带电半球面,电荷面密度为n,求球心的电场强度

这个没有办法用高斯定理做,假设用高斯,首先要做个闭合的面,这个面只能是个球面(别的面就更复杂了),而这个球面上的场强肯定是大小不均的,你又不能用电量除以面积积分得场强.要求解的话,要积分,把半球面细分

一半径为R的半球面均匀带电,电荷面密度为a,求球心的电场强度?

把半球面看作许多圆环,积分即可没有必要在这问这些问题,把教材静电场例题及课后题做会就行了前提是会点微积分知识

求线电荷密度为λ的均匀带电无限长直细棒周围的场强大小

使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ

已知电荷的面密度怎样求线密度?

面密度不趋于无穷大的话,线密度就趋于0.所以这个问题是不会出现的.

设有一无限长均匀带电直线,单位长度上的电荷即电荷线密度为a,求距直线为r处的电场强度.这题咋做,怎么选取高斯面?

带点导体球壳的电势和内径无关,它的表面的电势是U=kq/R2,所以球外距离球心r处的场强就是Er=kq/r^2=UR2/r^2

求线密度与面密度的关系?

线密度*长度=面密度*横截面积

一个半径为R的无限长圆柱体均匀带电,电荷体密度为p.求圆柱体内外任意一点的电场强度.

以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再

请用高斯定理求面密度为a的无限大均匀带电平面场强

那个希腊字母我用$;来代替面有两边,每边电荷为a*S/2,高斯定理E*S=(a*S/2)/$所以E=a/2$

电荷以相同的面密度分布在半径为R1=10cm和R2=20cm的两个同心球面上,设无限远处电荷为零,球心处的电势为U=30

这个好像是我们学校练习册上的题目吧,都会有答案的,找下学长,或者去下打印店那边吧,有答案的额

关于高斯定理两个带等量异号电荷的无限长同轴园柱面,半径分别R1,R2(前面的大),单位长度为A,求r(R1,R2之间)处

设该立方体的边长为a,考虑以点电荷为中心,边长为2a的立方体,根据高斯定律,大立方体的每一个面的电通量是q/6ε,然后由于原来的立方体之中有三个面分别是大立方体三个面的1/4,由对称性可以知道这三个面

关于高斯定理的题用高斯定理求均匀带正电的无限长细棒外的场强分布,设棒上电荷的线密度为λ.

2πrhE=λh/ε.因此高斯面上任意一点的电场强度的大小为E=λ/(2πε.r)

如图,是一个面型无限网络,每一节的电阻为r,求A,C的等效电阻.

遇到老本行了,这道题是前苏联中学物理竞赛题的变型.我两年多没动过物理了,讲的不对请见谅.假设,A右边,C下边的点为B.设电流I从A点流入,向四面八方到无穷.则由A到B的电流有1/4I,再假设电流I从无

求面密度为μ的均匀半球壳对于z轴的转动惯量

给点分啊,大哥,怎么都是0悬赏分啊.我简单说下,就是按字面意思来列的表达式,质量乘以半径的平方,首先取样,0-2π积分指的是分割成一个个扇面,扇面上取试样与数值轴夹角为φ,试样近似一个正方形,表达出边