调和级数∑1 n是发散的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:36:07
调和级数∑1 n是发散的
证明调和级数 是发散的

,从结果:全部S2N锡>=1/2建立一个任意?把n变为2NS4NS2N>=1/2建立以次类推S8nS4N>=1/2小号标2^KN-S标准2^(K-1)N>=1/2所有的都概括BR/>S下标2^海里>=

复变函数,为什么级数∑1/n是发散的,而∑1/n²是收敛的?我觉得都是收敛的啊?

这就是级数的问题了,高等数学,同济版下册有证明的.那个n的次数大于等于2级数都收敛,等于一时级数发散.再答:��ӭ׷�ʡ�再答:ϣ������а���

利用等比级数和调和级数的收敛与发散性质以及数列的收敛性质,判断下列级数的收敛性

1/2^n由等比级数可知收敛于1;而1/3n发散收敛级数加上发散级数为发散级数

高数级数散敛性的问题看B  加绝对值是调和级数1/N 那不是发散的么,不加绝对值用莱布尼茨判别法,不

你把Leibniz级数看清楚.满足的是Σ(-1)^(n+1)Un,其中Un>0,中文名字是交错级数!你B选项(-1)^(2n+1)恒为负,哪里交错了?哎,看书看书看书……光记公式又记错了,不看中文意思

调和级数是发散的,但是 n平方分之1 这个级数为什么就收敛啊 怎么证明?

级数∑1/n^2的前n项和sn=1+1/2^2+1/3^2+……+1/n^2是递增的,且sn

级数1/n+1是收敛的还是发散的?

如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.

为什么调和级数是发散的?

1+1/2+1/3+1/4+...分段=1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10...+1/16)+...放缩法,每个括号里统一分母>1+1/2+(1/4

怎么证明调和级数是发散的

方法一,直接从这个结果出发:S2n-Sn>=1/2对于任意n成立则把n变成2nS4n-S2n>=1/2成立以次类推S8n-S4n>=1/2S下标2^kn-S下标2^(k-1)n>=1/2把这些统统相加

调和级数发散的几种证明方法

摘 要:数学分析在数项级数部分有一个重要级数——凋和级数,它在研究数项级数敛散陛的过程中起到了重要作用.柯两收敛准则给出了级数收敛的充分必要条件,进而又得出级数收敛,则lim/n→∞un=0的推论,它

证明调和级数发散过程中部分和相减S2n-Sn=(1/n+1)+(1/n+2)+.+1/2n 怎么得到的?

S2n=1+1/2+...+1/n+(1/n+1)+(1/n+2)+.+1/2nSn=1+1/2+...+1/n所以:S2n-Sn=(1/n+1)+(1/n+2)+.+1/2n

N趋于无穷的时候 N分之1的极限是零么?为什么∑N从1到无穷 N分之一是发散的

1、是02、此为调和级数用反证假设收敛于s记前n项和为sn则s2n-sn→s-s=0但是s2n-sn=1/(n+1)+1/(n+2)+……+1/2n>(1/2n)*n=1/2显然不会等于0矛盾假设不成

黎曼假设 的内容..百度百科 黎曼假设1730年,欧拉在研究调和级数:∑1/n=1+1/2+1/3+...+1/n.时,

...这个已经是最简的表达了..∑是求和表达式∧是因为格式原因它的意思是如2∧2表示2的2次方∏是乘积表达式类似求和表达式问问老师符号的意义然后自己把公式写出来初中生对黎曼假设感兴趣你厉害啊加油啊

如何证明调和级数是发散的?

太复杂了,一大堆文字...有时间写下来,------------------------------------------Euler1734年的推导过程——从log(1+1/x)=1/x-1/(2x

根号n+1减去根号n的极限为什么是发散的

我开始做的也是收敛,纠结了,不过换种思路就是列出几项,你会发现这个式子和等于(根下(n+1)-根下1),这个和s极限为无穷,结果是发散再问:是啊,但是用比值判别法貌似又是收敛的……

证明几何级数和调和级数的收敛和发散性

先看调和级数:证明如下:由于ln(1+1/n)<1/n (n=1,2,3,…) 于是调和级数的前n项部分和满足 Sn=1+1/2+1/3+…+1/n>ln(1

级数证明调和级数1/n发散如何证明1/2n和1/(2n-1)也发散?

“数学之美”团员448755083为你解答!调和级数A=∑(1/n)=1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+(1/8)+(1/9)+(1/10)+.显然1/3>1

判断级数∑(n=1)(-1)^n/(n+根号n)是绝对收敛,条件收敛还是发散

{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛