o为三角形abc内任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:13:26
o为三角形abc内任意一点
如图,O为三角形ABC内任意一点,求证:OA+OB大于AC+BC急!

写反了吧AC+BC>OA+OB证明:延长BO交AC于D∵BC+CD>BD,AD+OD>OA∴BC+CD+AD+OD>BD+OA∴BC+AC+OD>OD+OB+OA∴AC+BC>OA+OB数学辅导团解答

若三角形ABC的三边a、b、c成等差数列且a小于b小于c,G为三角形ABC的重心I为三角形的内心,O是平面内任意一点

哈哈哈,够搞笑的,G在已知中出现了,求证里却没出现,是你抄错了,还是题目本身就是这样的?

已知O为三角形ABC内一点,对任意K属于R,恒有|OA-OB-KBC|>=|AC|,则三角形一定是

|OA-OB-KBC|>=|AC|,即|BA-kBC|>=|AC|,如图,上式的意思,是直线BC上,任意一个点与A的连接线段中.AC是最短者.∴AC⊥BC,三角形是直角三角形(∠C=90&

如图:O是△ABC内任意一点A'.B'.C'内分别是OA.OB.OC的中点.三角形ABC与三角形A'B'C'相似吗?为什

这和o无关啊……相似是必然的,中位线平行于底边,然后直接用平行或用AAA都可以证明相似~

已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC

证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,

等边三角形ABC,O为三角形内任意一点,OD垂直AB,OF垂直BC,OE垂直AC,求OD+OE+OF=三角形的高

利用面积可以求解S三角形AOBS等边三角形ABC+S三角形BOC+S三角形COA即是1/2AB*三角形的高=1/2AB*OD+1/2BC*OF+1/2AC*OE因为三角形ABC是等边三角形所以AB=B

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

已知:G为三角形ABC的重心,O为平面内任意一点.求证:向量OG=3分之1(向量OA+向

向量GA=向量OA-向量OG向量GB=向量OB-向量OG向量GC=向量OG-向量OC向量GA+向量GB+向量GC=向量OA-向量OG+向量OB-向量OG+向量OC-向量OG=0向量3向量OG=向量OA

如图,O为三角形ABC内任意一点,求证:OA+OB<AC+BC

证明:延长AO交BC于D∵AC+CD>AD,BD+OD>OB∴AC+CD+BD+OD>AD+OB∵CD+BD=BC,AD=OA+OD∴AC+BC+OD>OA+OD+OB∴AC+BC>OA+OB数学辅导

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

已知点O是三角形ABC内任意一点,连接OA并延长到E,使得AE=OA 以OB,OC,为邻边作平行四边

1,连接AH.OBFC为平行四边形,点H为OF、BC中点.AB=AC 点H为BC中点  AH⊥BCAH=√3BC/2OA/OE=1/2OH/OF=1/2OA/OE=OH/OFAH//EFEF⊥BCAH

已知:如图,O为三角形ABC内任意一点.求证:角BOC=角1+角2+角A

连接AO延长至BC于D,则可看到角BOD为三角形AOB的外角,角COD为三角形AOC的外角,所以角BOD等于角1加上角BAO,角COD等于角2加上角OAC,角BOD加上角COD既是角BOC,即可得所证

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

设o为三角形abc内一点,若任意k属于实数……求高手解,

直角三角形,应为oa-ob=ba,oa-oc=ca,ba-kbc的模长等同于a向bc边所在的直线上任意一点的连结而成的向量的模长,最短长度即是a向bc边的高,而这个最短长度都不大于ca的长度,可见ca

已知O为三角形ABC所在平面内一点,

在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和

O为三角形ABC内任意一点,求证:OA+OB+OC

证明:延长AO交BC于D,在△OBD和△ACD中,有OB

已知:如图,O为三角形ABC内任意一点,求证:角BOC=角1+角2+角A.

延长CO,交AB于D.角BOC=角1+角BDO(外角等于不相邻两内角和)角BDO=角A+角2(同上)所以,角BOC=角1+角2+角A.证毕!

p为三角形ABC内任意一点,求证:PA+PB

延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB