o为三角形abc内任意一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:13:26
写反了吧AC+BC>OA+OB证明:延长BO交AC于D∵BC+CD>BD,AD+OD>OA∴BC+CD+AD+OD>BD+OA∴BC+AC+OD>OD+OB+OA∴AC+BC>OA+OB数学辅导团解答
哈哈哈,够搞笑的,G在已知中出现了,求证里却没出现,是你抄错了,还是题目本身就是这样的?
|OA-OB-KBC|>=|AC|,即|BA-kBC|>=|AC|,如图,上式的意思,是直线BC上,任意一个点与A的连接线段中.AC是最短者.∴AC⊥BC,三角形是直角三角形(∠C=90&
这和o无关啊……相似是必然的,中位线平行于底边,然后直接用平行或用AAA都可以证明相似~
证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,
利用面积可以求解S三角形AOBS等边三角形ABC+S三角形BOC+S三角形COA即是1/2AB*三角形的高=1/2AB*OD+1/2BC*OF+1/2AC*OE因为三角形ABC是等边三角形所以AB=B
分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD
有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O
1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,
向量GA=向量OA-向量OG向量GB=向量OB-向量OG向量GC=向量OG-向量OC向量GA+向量GB+向量GC=向量OA-向量OG+向量OB-向量OG+向量OC-向量OG=0向量3向量OG=向量OA
证明:延长AO交BC于D∵AC+CD>AD,BD+OD>OB∴AC+CD+BD+OD>AD+OB∵CD+BD=BC,AD=OA+OD∴AC+BC+OD>OA+OD+OB∴AC+BC>OA+OB数学辅导
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
1,连接AH.OBFC为平行四边形,点H为OF、BC中点.AB=AC 点H为BC中点 AH⊥BCAH=√3BC/2OA/OE=1/2OH/OF=1/2OA/OE=OH/OFAH//EFEF⊥BCAH
连接AO延长至BC于D,则可看到角BOD为三角形AOB的外角,角COD为三角形AOC的外角,所以角BOD等于角1加上角BAO,角COD等于角2加上角OAC,角BOD加上角COD既是角BOC,即可得所证
△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD
直角三角形,应为oa-ob=ba,oa-oc=ca,ba-kbc的模长等同于a向bc边所在的直线上任意一点的连结而成的向量的模长,最短长度即是a向bc边的高,而这个最短长度都不大于ca的长度,可见ca
在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和
证明:延长AO交BC于D,在△OBD和△ACD中,有OB
延长CO,交AB于D.角BOC=角1+角BDO(外角等于不相邻两内角和)角BDO=角A+角2(同上)所以,角BOC=角1+角2+角A.证毕!
延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB